簡易檢索 / 詳目顯示

研究生: 蔡麗琴
Tsai Li-Chin
論文名稱: 植物DNA分析於鑑識科學應用之研究
The study of botanic DNA analysis on forensic applications
指導教授: 王震哲
Wang, Jenn-Che
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 159
中文關鍵詞: 種屬鑑定刑事植物學植物DNA資料庫歸群分析遺傳多樣性鬼針草nrDNAITS1ITS25.8ScpDNAtrnL introntrnL-trnF IGS大麻鑑定
英文關鍵詞: species identification, forensic botany, plant DNA database, nrDNA, ITS1, ITS2, 5.8S, cpDNA, trnL intron, trnL-trnF IGS, Bidens pilosa L, Genetic diversity, cannabis identification, cluster analysis
論文種類: 學術論文
相關次數: 點閱:230下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物之分子鑑定由於缺乏適當的DNA資料庫以資比對而受到很大的限制,本研究乃以葉綠體基因組(cpDNA)中的trnL intron 及trnL-trnF IGS 等兩個基因位建立植物DNA資料庫以應用於植物之種屬鑑定。本資料庫包含台灣地區常見植物79科206屬264種共365株個體。這些植物之種屬幾乎可經由此二基因位之序列多型及長度多型加以鑑別,經由盲樣測試發現以本研究所建立之資料庫比對後大部分盲樣可搜尋到正確的種別,以鄰近歸群法進行80個樣品之歸群分析後幾乎所有的樣品均歸屬於正確的科內及屬內,顯示此二基因位所建立之DNA資料庫適於應用在刑事植物之種屬鑑別。
    鬼針草(Bidens pilosa L.)之種子具有帶刺的鉤毛可經由動物傳播,故此類廣泛分佈的植物亦有機會出現在犯罪現場。本研究採集鬼針草之三個變種(大花咸豐草、小白花及白花鬼針)共11個族群161個樣品,加上7株當控制組的鬼針舅(Bidens biternata)共168個樣品,分別進行trnL intron及trnL-trnF IGS等兩個cpDNA的基因位與ITS1、5.8S及ITS2等三個細胞核核糖體DNA(nrDNA)的基因位之序列分析。其中trnL intron、ITS1、5.8S及ITS2 等四個基因位之序列分析均可有效的鑑別鬼針舅及鬼針草兩種間之差異。將此五個基因位之型別整合為84種單倍型幾乎可鑑別大花咸豐草與其它兩個變種間之差異。根據核苷酸變異位點、序列型、基因型歧異度、核苷酸歧異度、遺傳歧異度等相關指數,於nrDNA表現之遺傳多樣性均遠高於cpDNA。AMOVA分析之結果顯示鬼針草其遺傳變異的主要貢獻為族群內個體間的變異,於nrDNA及cpDNA均佔50 %以上。大花咸豐草與其他兩變種間的基因交流值均遠低於此二變種間的基因交流值,極可能在較早歸化的白花鬼針與小白花鬼針間已出現明顯的雜交現象,而較晚歸化的大花咸豐草與此二變種間的雜交現象則可能尚不明顯。
    於可疑種子之種屬鑑定的案例報告中,本研究以cpDNA之trnL-trnF IGS及nrDNA之ITS1等二基因位之序列分析成功的進行其種屬鑑定,顯示本系統為大麻種子進行種屬鑑定之有效方法。

    Forensic botanical comparison can be hampered by the lack of appropriate DNA databases. In this study, we report on the use of the trnL intron and the trnL-trnF IGS in the chloroplast genome (cpDNA) and establish a DNA sequence database for plant species identification. The database comprises 365 individual sequences representing 79 families, 206 genera and 264 species. These plant species can be grouped to species level using both sequence and length polymorphisms at these loci. In blind trial testing, most of the blind samples matched their respective species from our local DNA database. Cluster analysis with Neighbor joining method of the two DNA regions from 80 samples of this study were constructed and clustered to both family and genus. The sequence database described in this study can be used to identify plant species using DNA sequences of the two loci and illustrates its value in plant species identification.
    Bidens pilosa L.with barbed fruits is dispersed via animal species resulting in a widespread distribution and therefore frequently collected when attached to evidential samples during criminal investigation. In this study, 161 specimens were used from these varieties comprising 11 different populations and 7 samples of Bidens biternata were included as an out-group control. DNA fragments of all samples at the trnL intron and trnL-trnF IGS loci of cpDNA, ITS1, 5.8S and ITS2 of nrDNA were amplified and sequenced. From the sequence types of the 5 loci, trnL intron, ITS1, ITS2 and 5.8S were found to be useful markers to differentiate Bidens biternata and Bidens pilosa. There were 84 haplotypes at the 5 loci from 161 specimens. Among 84 haplotypes, B. radiata could be almost differentiated from the varieties of Bidens pilosa using these 5 loci. It showed that the genetic diversity of nrDNA sequence was higher than that of cpDNA from the data of the number of polymorphic sites (S), number of haplotypes (H), gene diversity (Hd), nucleotide diversity (π) and genetic diversity (θ). From the results of the analysis of molecular variance (AMOVA), there are more than 50 % variance contributed by the variance of “within populations” in the loci of nrDNA and cpDNA. The gene flow between var. radiata and var. minor or var. pilosa showed lower than those between var. minor and var. pilosa, it indicated the significant hybridization phenomenon between var. minor and var. pilosa which naturalized earlier than var. radiata.
    In the case report of suspect seed samples, species analysis was performed by DNA analysis using the trnL-trnF IGS of cpDNA, and the ITS1 of nrDNA. Based on these analyses, it was determined that all seeds were from the species Cannabis sativa. The system established in this study provides a robust tool for cannabis seed identification.

    中文摘要 --------------------------------------------------------------------- IV 英文摘要 --------------------------------------------------------------------- VI 附表目次 --------------------------------------------------------------------- VIII 附圖目次 --------------------------------------------------------------------- XII 第一章 緒言 壹、研究動機與目的 ------------------------------------------------------ 1 貳、文獻探討 --------------------------------------------------------------- 3 參、本論文之研究架構---------------------------------------------------- 17 肆、參考文獻 --------------------------------------------------------------- 19 第二章 以葉綠體 trnL intron 及 trnL-trnF IGS之DNA序列 進行台灣常見植物種屬鑑定之研究 壹、 前言 -------------------------------------------------------------------- 26 貳、 研究材料及方法 ----------------------------------------------------- 28 參、 結果與討論 ----------------------------------------------------------- 40 肆、 結論 -------------------------------------------------------------------- 68 伍、 參考文獻 -------------------------------------------------------------- 69 第三章 以葉綠體非密碼區及核核糖體DNA序列探討台灣地區 鬼針草之遺傳多樣性 壹、前言 ---------------------------------------------------------------------- 71 貳、研究材料及方法 ------------------------------------------------------- 76 參、結果與討論 ------------------------------------------------------------- 83 肆、結論 --------------------------------------------------------------------- 121 伍、參考文獻 --------------------------------------------------------------- 123 第四章 案例報告:以葉綠體及核DNA分析進行大麻種子鑑定 壹、前言 ---------------------------------------------------------------------- 127 貳、研究材料及方法 ------------------------------------------------------- 129 參、結果與討論 ------------------------------------------------------------- 132 肆、結論 ---------------------------------------------------------------------- 137 伍、參考文獻 ---------------------------------------------------------------- 138 第五章 總結 ---------------------------------------------------------------- 140 第六章 未來展望 ---------------------------------------------------------- 142 附錄一、本研究採集之植物樣品名錄 ---------------------------------- 143 附錄二、著作目錄 ----------------------------------------------------------- 152 附錄三、代表著作 ----------------------------------------------------------- 159

    Baldwin BG. 1993. Molecular phylogenetics of calycadenia(Compositae) based on its sequences of nuclear ribosomal DNA:chromosomal and morphological evolution reexanmined. American Journal of Botany. 80(2): 222-238.
    Bayer RJ, Puttock CF and Kelchner SA. 2000. Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. American Journal of Botany 87: 259-272.
    Blair MW, Panaud O and McCouch SR, 1999. Inter-simple sequence repeat (ISSR)amplification for analysis of microsatllite motif frequencey and fingerprinting in rice (Oryzae sativa L.). Theor. Appl. Genet. 98:780-792.
    Chatterton NJ, Hsiao C, Asay KH, Wang RR-C and Jensen KB. 1992. Nucleotide sequence of the internal trancribed spacer region of rDNA in wheat, Triticum aestivum L. (Gramineae). Plant Molecular Biology. 20: 159-160.
    Chatterton NJ, Hsiao C, Asay KH, Jensen KB and Wang RR-C. 1992. Nucleotide sequence of the internal trancribed spacer region of rDNA in the primitive oat species, Avena longiglumis Durieu (Gramineae). Plant Molecular Biology. 20: 163-164.
    Chou CH, Chiang YC and Chiang TY. 1999. Within- and between-individual length heterogeneity of the rDNA-IGS in Miscanthus sinensis var. glaber (Poaceae): phylogenetic analysis. Genome. 42: 1088-1093.
    Clegg MT. 1993. Chloroplast gene sequences and the study of plant evolution. Proc. Natl. Acad. Sci. USA 90: 363-367.
    Duff RJ and Nickrent DL. 1997. Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. J. Mol. Evol. 45: 631-639.
    Duff RJ and Nickrent DL. 1999. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Am. J. Bot. 86 (3): 372-386.
    Fangan BM, Stedje B, Stabbetorp OE, Jensen ES and Jakobsen KS. 1994. A general approach for PCR-amplification and sequencing of chloroplast DNA from crude vascular plant and algal tissue. Biotechniques. 16(3): 484-494.
    Fey J, Dietrich A, Cosset A, Desprez T and Marechal-Drouard L. 1997. Evolutionary aspects of “chloroplast-like” trnN and trnH expression in higher-plant mitochondria. Curr. Genet. 32: 358-360.
    Fujii N, Ueda K, Watano Y and Shimizu T.1999. Further analysis of intraspecific sequence variation of chloroplast DNA in primula cuneifolia Ledeb. (primulaceae):implication for biogeography of the Japanese Alpine Flora. J. plant Res. 112: 87-95.
    Fukuda T, Yokoyama J and Ohashi H. 2001. Phylogeny and biogeography of the genus Lycium (Solanaceae): inferences from chloroplast DNA sequences. Mol. Phylogenet. Evol. 19(2): 246-58.
    Ganders FR, Berbee ML, Pirseyedi M. 2000. ITS base sequence phylogeny in Bidens (Asteraceae): evidence for the continental relatives of Hawaiian and Marquesan Bidens, Syst. Bot. 25: 122-133.
    Goloubinoff P, Paabo S and Wilson AC. 1993. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc. Natl. Acad. Sci. USA. 90: 1997-2001.
    Gupta M, Chyi YS, Romero-Severson J and Owen JL. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89: 998-1006
    Gupta PK, Balyan HS, Sharman PC and Ramesh B. 1996. Microsatellites in plants: A new class of molecular markers. Curr. Sci. 70: 45-54.
    Hasebe M, Omori T, Nakazawa M, Sano T, Kato M and Iwatsuki K. 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sc. USA. 91: 5730-5734.
    Hiesel R, Haeseler AV and Brennicke A. 1994. Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc. Natl. Acad. Sci. USA. 91: 634-638.
    Hughes MA. 1996. “Plant Molecular Genetics”, Addison Wesley Longman Limited.
    Ishii T, Takahashi C, Ikeda N, Kamijima O and Mori N. 2006. Mitochondrial microsatellite variability in common wheat and its ancestral species. Genes Genet Syst. 81(3): 211-214.
    Jagadish V, Robertson J and Gibbs A. 1996. RAPD analysis distinguishes Cannabis sativa samples from different sources. Forensic Sci. Int. 79: 113-121.

    Jobst J, King K and Hemleben V. 1998. Molecular evolution of the internal transcribed spacers(ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Molecular Phylogenetics and Evolltion. 9: 204-219.
    Koller B, Lehmann A, McDermott JM and Gessler C. 1993. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85: 901-904.
    Linacre A and Thorpe J. 1998. Detection of identification of cannabis by DNA. Forensic Sci. Int. 91: 71-76.
    Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV and Rafalski JA. 1995. Hypervariable microsatellites provide a general source of polymorphisc DNA markers for the chloroplast genome. Curr. Biol. 5: 1023-1029.
    Provan J, CorbettvG, McNicol JW and Powell W. 1997. Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chlopoplast simple sequence repeats. Genome. 40: 104-110.
    Scott LJ, Graham GC, Hannan-Jones M and Yeates DK. 1997. DNA profiling resolves the limited importance of flower colour in defining varieties of Lantana camara. Electrophoresis. 18: 1560-1563.
    Setoguchi H, Osawa TA, Pintaud JC, Jaffre T and Veillon JM. 1998. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany. 85: 1507-1516.

    Siniscalco Gigliano G, Caputo P and Cozzolino S. 1997. Ribosomal DNA analysis as a tool for the identification of Cannabis sativa L. specimens of forensic interest. Sci. Justice 37: 171-174.
    Siniscalco Gigliano G. 1998. Identification of Cannabis sativa L. (Cannabaceae) using restriction profiles of the Internal Transcribed Spacer II (ITS2). Sci. Justice 38: 225-230.
    Siniscalco Gigliano G. 1999. Preliminary data on the usefulness of internal transcribed spacer I (ITS1) sequence in Cannabis sativa L. identification. J. Forensic Sci. 44: 475-477.
    Suh Y, Thien LB, Reeve HE and Zimmer EA.1993. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. American Journal of Botany. 80 (9): 1042-1055.
    Taberlet P, Gielly L, Pautou G and Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Bio. 17: 1105-1109.
    Terry RG, Nowak RS and Tausch RJ. 2000. Genetic variation in chloroplast and nuclear ribosomal DNA in Utah Juniper (Juniperus osteosperma, Curpressaceae): evidence for interspecific gene flow, Am. J. Bot. 87: 250-258.
    Udupa SM, Robertson LD, Weigand F, Baum M and Kahl G. 1999. Allelic variation at (TAA)n microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol. Gen. Genet. 261: 354-363.
    Vendramin GG, Lelli L, Rossi P and Morgante M. 1996. A set primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol. Ecol. 5(4): 595-598.
    Vos P, Hogers R, Bleeker M, Reijans M, Van der Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414.
    Wallander E and Albert VA. 2000. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am. J. Bot. 87(12): 1827-1841.
    Weising K and Gardner RC. 1999. A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome. 42: 9-19.
    Winter PP, faff T, Udupa SM, Huttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ and Kahl G. 1999. Characterization and mapping of sequence-tagged microsatellite site in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet. 262: 90-101.
    Witsenboer H, Vogel J and Michelmore RW. 1997. Identification, genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome. 40: 923-936.
    Wolfe AD, Xiang QY and Kephart SR. 1998. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol. Ecol. 7: 1107-1125.
    Yasui Y and Ohnishi O. 1998. Phylogenetic relationships among Fagopyrum species revealed by the nucleotide sequences of the ITS region of the nuclear rRNA gene. Genes Genet. Syst. 73(4): 201-210.
    Zheng D, Nielsen BL and Daniell H. 1997. A 7.5-kbp region of the maize (T cytoplasm) mitochondrial genome contains a chloroplast-like trnI(CAT)pseudo gene and many short segments homologous to chloroplast and other known genes. Curr. Genet. 32: 125-131.

    QR CODE