研究生: |
杜冠瑩 Du, Guan-Ying |
---|---|
論文名稱: |
鋰基電池材料特性之理論探討 A Theoretical Investigation on Properties of Lithium-Based Battery Materials |
指導教授: |
李祐慈
Li, Yu-Tzu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 鋰基電池 、鋰硫電池 、給體數 、介電常數 、多硫化物 、溶劑效應 、鹼金屬硫電池 、有機多硫化物 |
英文關鍵詞: | lithium-based battery, lithium-sulfur battery, donor number, dielectric constant, polysulfides, solvent effect, alkali metal-sulfur battery, organosulfides |
DOI URL: | http://doi.org/10.6345/NTNU202001428 |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將關注三種在能量儲存上具有前景的電化學電池,分別是鋰硫電池、鹼金屬硫電池和鋰有機硫電池。討論分為三部分。在論文的第一部分,我們使用密度泛函理論(Density Functional Theory, DFT)搭配SMD溶劑模型(Solvation Model Based on Density)並考慮電解液介電常數及donor number(DN)的效應,探討鋰硫電池當中電解液對多硫化物的電化學反應路徑及相關生成物的影響。我們發現當電解液具有低介電常數或高介電常數但低DN時,鋰硫電池中可能的電化學反應路徑為2Li+S8 → Li2S8 → Li2S6 → Li2S4。另外,當電解液具有高介電常數及高DN時,可能的電化學反應路徑為S8 → S82- → S4•- → S42-或S8 → S82- → S62- → S3•-,其中S82-亦有可能不經由S62-而生成S3•-,即S82- → S3•-。
論文的第二部分討論鹼金屬硫電池的材料特性,我們使用DFT搭配SMD溶劑模型來探討不同鹼金屬的硫化物在二甲基亞碸溶劑中的穩定性。研究結果顯示,相較於溶合更強,與更多溶劑分子鍵結而形成較大團簇的鋰離子,銣離子與短鏈多硫化物陰離子(硬鹼)的靜電力較強,而使得短鏈多硫化物陰離子可以被穩定。此外,鹼金屬硫化物M2S的溶解度會影響電容量。
論文的第三部分,我們使用DFT方法搭配SMD溶劑模型來探討鋰有機硫電池中不同取代基多硫化物對電池電容量的影響。我們發現添加二烯丙基二硫化物或二烯丙基三硫化物於對稱取代有機硫化物(例如:二苯基二硫化物)作為反應物時,系統中會形成非對稱取代有機多硫化物;並且因烯丙基自由基容易生成,可促成非對稱取代有機硫化物中的碳-硫鍵斷鍵。此碳-硫鍵斷鍵會產生烯丙基自由基和有機二硫/三硫自由基(例如:苯基二硫自由基或苯基三硫自由基)。有機二硫/三硫自由基進一步還原,並生成S2-,使得電池陰極於放電過程中可以得到較多電子,從而提升電池的電容量。因此二烯丙基二硫化物或二烯丙基三硫化物是提升電池電容量的重要因素。
We focus on the theoretical investigations that are related to three kinds of promising battery devices with application potentials in the electric energy storage. They are lithium-sulfur batteries, alkali metal-sulfur batteries and rechargeable batteries.
This thesis includes three parts. In the first part, we apply density functional theory (DFT) combining with the solvation model based on density (SMD) model to consider the effect of the electrolyte dielectric constant and donor number (DN) on the electrochemical reaction pathways and the corresponding polysulfide products. We find that in solvents with either a low dielectric constant or a high dielectric constant but a low donor number, the reaction pathway follows the order of 2Li+S8 → Li2S8 → Li2S6 → Li2S4. On the other hand, the electrochemical reactions in the solvent with high dielectric constant and high DN can be described by the following reaction pathways: S8 → S82- → S4•- → S42- , S8 → S82- → S62- → S3•-, and S82- → S3•-.
In the second part, we turn to the material properties of alkali metal-sulfur batteries. DFT and SMD Model are employed to investigate the stabilities of alkali metal polysulfides in dimethyl sulfoxide. We find that, in contrast to the lithium ion that shows stronger solvation and forms a larger cluster by binding with more solvent molecules, the rubidium ion exhibits stronger electrostatic interaction with strongly negatively charged short-chain polysulfides. Besides, the solubility of alkali metal sulfides M2S would affect the capacity of batteries.
In the last part, we apply DFT and SMD methods to study potential capacity enhancement of organosulfides as catholytes with different organic substituents in rechargeable lithium batteries. We find that when the diallyl di/trisulfides are added to the symmetrically substituted organosulfides such as diphenyl disulfides, asymmetric substituted organosulfides will be formed in the system. This promotes the bond breaking of carbon-sulfur bonds of asymmetric substituted organosulfides due to the generation of allyl radical formation. The organo di/trisulfide radicals thus formed, such as phenyl di/trisulfide radicals, will then be reduced to produce sulfide ions (S2-), leading to more electron gain in the cathode during discharging. Therefore, diallyl di/trisulfides play the role of an activator to increase in the battery capacity.
1. Liu, C.; Neale, Z. G.; Cao, G., Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today 2016, 19 (2), 109-123.
2. Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J., Metallic anodes for next generation secondary batteries. Chemical Society Reviews 2013, 42 (23), 9011-9034.
3. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M., Li–O2 and Li–S batteries with high energy storage. Nature Materials 2011, 11, 19.
4. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W., Lithium−Air Battery: Promise and Challenges. The Journal of Physical Chemistry Letters 2010, 1 (14), 2193-2203.
5. Eftekhari, A., The rise of lithium–selenium batteries. Sustainable Energy & Fuels 2017, 1 (1), 14-29.
6. Liu, Y.; Wang, J.; Xu, Y.; Zhu, Y.; Bigio, D.; Wang, C., Lithium–tellurium batteries based on tellurium/porous carbon composite. Journal of Materials Chemistry A 2014, 2 (31), 12201-12207.
7. Hong, X.; Mei, J.; Wen, L.; Tong, Y.; Vasileff, A. J.; Wang, L.; Liang, J.; Sun, Z.; Dou, S. X., Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Advanced Materials 2019, 31 (5), 1802822.
8. Xu, N.; Qian, T.; Liu, X.; Liu, J.; Chen, Y.; Yan, C., Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters 2017, 17 (1), 538-543.
9. Zhou, J.; Qian, T.; Xu, N.; Wang, M.; Ni, X.; Liu, X.; Shen, X.; Yan, C., Selenium-Doped Cathodes for Lithium–Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency. Advanced Materials 2017, 29 (33), 1701294.
10. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J., Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials 2015, 5 (16), 1401986.
11. Zhao, Q.; Hu, Y.; Zhang, K.; Chen, J., Potassium–Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal–Sulfur Batteries. Inorganic Chemistry 2014, 53 (17), 9000-9005.
12. Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y., Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2016, 55 (34), 10027-10031.
13. Fang, X.; Peng, H., A Revolution in Electrodes: Recent Progress in Rechargeable Lithium–Sulfur Batteries. Small 2015, 11 (13), 1488-1511.
14. Zou, Q.; Lu, Y. C., Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-vis Spectroscopic Study. J Phys Chem Lett 2016, 7 (8), 1518-25.
15. Wu, M.; Bhargav, A.; Cui, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y., Highly Reversible Diphenyl Trisulfide Catholyte for Rechargeable Lithium Batteries. ACS Energy Letters 2016, 1 (6), 1221-1226.
16. Barghamadi, M.; Kapoor, A.; Wen, C., A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery. Journal of The Electrochemical Society 2013, 160 (8), A1256-A1263.
17. Angulakshmi, N.; Stephan, A. M., Efficient Electrolytes for Lithium–Sulfur Batteries. Frontiers in Energy Research 2015, 3 (17).
18. Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M., Recent Advances in Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials 2015, 5 (16), 1500117.
19. Li, G.; Li, Z.; Zhang, B.; Lin, Z., Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review. Frontiers in Energy Research 2015, 3, 5.
20. Zhang, S. S., Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources 2013, 231, 153-162.
21. Peled, E., Lithium-Sulfur Battery: Evaluation of Dioxolane-Based Electrolytes. Journal of The Electrochemical Society 1989, 136 (6), 1621.
22. Ryu, H. S.; Ahn, H. J.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Nam, T. H., Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochimica Acta 2006, 52 (4), 1563-1566.
23. Kim, S.; Jung, Y.; Lim, H. S., The effect of solvent component on the discharge performance of Lithium–sulfur cell containing various organic electrolytes. Electrochimica Acta 2004, 50 (2), 889-892.
24. Rauh, R. D.; Shuker, F. S.; Marston, J. M.; Brummer, S. B., Formation of lithium polysulfides in aprotic media. Journal of Inorganic and Nuclear Chemistry 1977, 39 (10), 1761-1766.
25. Rauh, R. D., A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. Journal of The Electrochemical Society 1979, 126 (4), 523.
26. Lai, C.; Gao, X. P.; Zhang, B.; Yan, T. Y.; Zhou, Z., Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites. The Journal of Physical Chemistry C 2009, 113 (11), 4712-4716.
27. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science 2010, 3 (10), 1531-1537.
28. Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D., Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. The Journal of Physical Chemistry C 2011, 115 (50), 25132-25137.
29. Yim, T.; Park, M.-S.; Yu, J.-S.; Kim, K. J.; Im, K. Y.; Kim, J.-H.; Jeong, G.; Jo, Y. N.; Woo, S.-G.; Kang, K. S.; Lee, I.; Kim, Y.-J., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochimica Acta 2013, 107, 454-460.
30. Barchasz, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F., Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochimica Acta 2013, 89, 737-743.
31. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S., Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114 (23), 11751-11787.
32. Ding, N.; Zhou, L.; Zhou, C.; Geng, D.; Yang, J.; Chien, S. W.; Liu, Z.; Ng, M.-F.; Yu, A.; Hor, T. S. A.; Sullivan, M. B.; Zong, Y., Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Scientific Reports 2016, 6, 33154.
33. Fang, D.; Wang, Y.; Liu, X.; Yu, J.; Qian, C.; Chen, S.; Wang, X.; Zhang, S., Spider-Web-Inspired Nanocomposite-Modified Separator: Structural and Chemical Cooperativity Inhibiting the Shuttle Effect in Li–S Batteries. ACS Nano 2019, 13 (2), 1563-1573.
34. Liu, C.-Y.; Li, E. Y., Adsorption Mechanisms of Lithium Polysulfides on Graphene-Based Interlayers in Lithium Sulfur Batteries. ACS Applied Energy Materials 2018, 1 (2), 455-463.
35. Kawase, A.; Shirai, S.; Yamoto, Y.; Arakawa, R.; Takata, T., Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique. Phys Chem Chem Phys 2014, 16 (20), 9344-50.
36. Wujcik, K. H.; Wang, D. R.; Raghunathan, A.; Drake, M.; Pascal, T. A.; Prendergast, D.; Balsara, N. P., Lithium Polysulfide Radical Anions in Ether-Based Solvents. The Journal of Physical Chemistry C 2016, 120 (33), 18403-18410.
37. Lu, Y.-C.; He, Q.; Gasteiger, H. A., Probing the Lithium–Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study. The Journal of Physical Chemistry C 2014, 118 (11), 5733-5741.
38. Cuisinier, M.; Cabelguen, P.-E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F., Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2013, 4 (19), 3227-3232.
39. Li, L.; Wang, L.; Liu, R., Effect of Ether-Based and Carbonate-Based Electrolytes on the Electrochemical Performance of Li–S Batteries. Arabian Journal for Science and Engineering 2019, 44 (7), 6361-6371.
40. Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F., Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes. Advanced Energy Materials 2015, 5 (16), 1401801.
41. Zou, Q.; Liang, Z.; Du, G.-Y.; Liu, C.-Y.; Li, E. Y.; Lu, Y.-C., Cation-Directed Selective Polysulfide Stabilization in Alkali Metal–Sulfur Batteries. Journal of the American Chemical Society 2018, 140 (34), 10740-10748.
42. Ryu, H.; Kim, T.; Kim, K.; Ahn, J.-H.; Nam, T.; Wang, G.; Ahn, H.-J., Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. Journal of Power Sources 2011, 196 (11), 5186-5190.
43. Bhargav, A.; Patil, S. V.; Fu, Y., A phenyl disulfide@CNT composite cathode for rechargeable lithium batteries. Sustainable Energy & Fuels 2017, 1 (5), 1007-1012.
44. Weng, G.-M.; Yang, B.; Liu, C.-Y.; Du, G.-Y.; Li, E. Y.; Lu, Y.-C., Asymmetric Allyl-Activation of Organosulfides for High-Energy Reversible Redox Flow Batteries. Energy & Environmental Science 2019, 12, 2244-2252.
45. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
46. Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics 1999, 110 (13), 6158-6170.
47. Peverati, R.; Truhlar, D. G., Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. The Journal of Physical Chemistry Letters 2011, 2 (21), 2810-2817.
48. Zhao, Y.; Truhlar, D. G., Comparative DFT Study of van der Waals Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and Zinc-Rare-Gas Dimers. The Journal of Physical Chemistry A 2006, 110 (15), 5121-5129.
49. Zhao, Y.; Truhlar, D. G., Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. The Journal of Physical Chemistry A 2006, 110 (49), 13126-13130.
50. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts 2008, 120 (1), 215-241.
51. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378-6396.
52. Szabó, A.; Ostlund, N. S., Modern quantum chemistry : introduction to advanced electronic structure theory. Mineola (N.Y.) : Dover publications 1996.
53. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R., Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. Journal of Computational Chemistry 1983, 4 (3), 294-301.
54. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016., Gaussian 16, Revision C.01.
55. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).
56. Cramer, C. J., Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons, Chichester 2013.
57. Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T.; Mitchell, J. B. O., A review of methods for the calculation of solution free energies and the modelling of systems in solution. Physical Chemistry Chemical Physics 2015, 17 (9), 6174-6191.
58. Levy, R. M.; Gallicchio, E., COMPUTER SIMULATIONS WITH EXPLICIT SOLVENT: Recent Progress in the Thermodynamic Decomposition of Free Energies and in Modeling Electrostatic Effects. Annual Review of Physical Chemistry 1998, 49 (1), 531-567.
59. Mennucci, B., Polarizable continuum model. WIREs Computational Molecular Science 2012, 2 (3), 386-404.
60. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A 1998, 102 (11), 1995-2001.
61. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 2003, 24 (6), 669-681.
62. Trasatti, S., The absolute electrode potential: an explanatory note (Recommendations 1986). Pure and Applied Chemistry 1986, 58 (7), 955-966.
63. Frisch, M. J.; Pople, J. A.; Binkley, J. S., Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics 1984, 80 (7), 3265-3269.
64. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics 2005, 7 (18), 3297-3305.
65. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics 2006, 8 (9), 1057-1065.
66. Moran, D.; Simmonett, A. C.; Leach, F. E.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F., Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar. Journal of the American Chemical Society 2006, 128 (29), 9342-9343.
67. Binkley, J. S.; Pople, J. A.; Hehre, W. J., Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. Journal of the American Chemical Society 1980, 102 (3), 939-947.
68. Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J., Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. Journal of the American Chemical Society 1982, 104 (10), 2797-2803.
69. Pietro, W. J.; Francl, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J. A.; Binkley, J. S., Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements. Journal of the American Chemical Society 1982, 104 (19), 5039-5048.
70. Dobbs, K. D.; Hehre, W. J., Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third-and fourth-row, main-group elements. Journal of Computational Chemistry 1986, 7 (3), 359-378.
71. Dobbs, K. D.; Hehre, W. J., Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first-row transition metals. Journal of Computational Chemistry 1987, 8 (6), 861-879.
72. Sriana, T.; Leggesse, E. G.; Jiang, J. C., Novel benzimidazole salts for lithium ion battery electrolytes: effects of substituents. Phys Chem Chem Phys 2015, 17 (25), 16462-8.
73. Smiatek, J.; Heuer, A.; Winter, M., Properties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective. Batteries 2018, 4 (4).
74. Wang, B.; Alhassan, S. M.; Pantelides, S. T., Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge. Physical Review Applied 2014, 2 (3), 034004.
75. Pascal, T. A.; Wujcik, K. H.; Velasco-Velez, J.; Wu, C.; Teran, A. A.; Kapilashrami, M.; Cabana, J.; Guo, J.; Salmeron, M.; Balsara, N.; Prendergast, D., X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles. The Journal of Physical Chemistry Letters 2014, 5 (9), 1547-1551.
76. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J., Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society 2012, 134 (45), 18510-18513.
77. Kamphaus, E. P.; Balbuena, P. B., Long-Chain Polysulfide Retention at the Cathode of Li–S Batteries. The Journal of Physical Chemistry C 2016, 120 (8), 4296-4305.
78. Steudel, R.; Steudel, Y., Polysulfide Chemistry in Sodium–Sulfur Batteries and Related Systems— A Computational Study by G3X(MP2) and PCM Calculations. Chemistry – A European Journal 2013, 19 (9), 3162-3176.
79. Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J., Lithium sulfur batteries, a mechanistic review. Energy & Environmental Science 2015, 8 (12), 3477-3494.
80. Steudel, R.; Chivers, T., The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chemical Society Reviews 2019.
81. He, Q.; Gorlin, Y.; Patel, M. U. M.; Gasteiger, H. A.; Lu, Y.-C., Unraveling the Correlation between Solvent Properties and Sulfur Redox Behavior in Lithium-Sulfur Batteries. Journal of The Electrochemical Society 2018, 165 (16), A4027-A4033.
82. Gutmann, V.; Wychera, E., Coordination reactions in non aqueous solutions - The role of the donor strength. Inorganic and Nuclear Chemistry Letters 1966, 2 (9), 257-260.
83. Muller, P., Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure and Applied Chemistry 1994, 66 (5), 1077-1184.
84. Assary, R. S.; Curtiss, L. A.; Moore, J. S., Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study. The Journal of Physical Chemistry C 2014, 118 (22), 11545-11558.
85. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A., Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. Journal of the American Chemical Society 2014, 136 (13), 5039-5046.
86. Paul, R. C.; Johar, S. P.; Banait, J. S.; Narula, S. P., Transference number and solvation studies in tetramethylurea. The Journal of Physical Chemistry 1976, 80 (4), 351-352.
87. Matsuura, N.; Umemoto, K.; Takeda, Y., Formulation of Stokes’ Radii in DMF, DMSO and Propylene Carbonate with Solvent Structure Cavity Size as Parameter. Bulletin of the Chemical Society of Japan 1975, 48 (8), 2253-2257.
88. Yang, R. T., Adsorbents: Fundamentals and Applications. John Wiley & Sons 2003.
89. Treptow, R. S., Determination of ΔH for Reactions of the Born-Haber Cycle. Journal of Chemical Education 1997, 74 (8), 919.
90. Block, E., The Organosulfur Chemistry of the Genus Allium – Implications for the Organic Chemistry of Sulfur. Angewandte Chemie International Edition in English 1992, 31 (9), 1135-1178.