研究生: |
宋元惟 Sung, Yuan-Wei |
---|---|
論文名稱: |
探討日本與台灣學生之模型本質認識
-以東京與台北地區為例 Discussion about the understanding of the Nature of the Model on Japanese and Taiwanese students -A case Study in Tokyo and Taipei |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 250 |
中文關鍵詞: | 模型本質認識 |
英文關鍵詞: | understanding of the Natural of Model |
DOI URL: | https://doi.org/10.6345/NTNU202204041 |
論文種類: | 學術論文 |
相關次數: | 點閱:116 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
由科學史我們可以發現,科學家經常透過建立模型來說明科學理論;並以模型協助進行推理以驗證現其理論,或產生新的科學理論。
隨著全球化的研究盛行,城鄉差異、國際差異的研究亦受到重視。為了解我國學生與日本學生對模型本質的認識有何差異,本研究以邱美虹(2015)國科會計畫的模型本質認識問卷為基礎,修改並且翻譯成日文。經一位日本科學教育背景的教授與7名日本研究生,確認翻譯內容與原文無誤。對台灣台北地區,以及日本東京地區國中、高中、大學生為研究對象,進行模型本質認識之調查。研究對象分別為東京地區某公立中學,學生158名、理科高中生83名;大學,理科61名、文科61名。台灣台北地區某公立中學,八年級學生162名;高三文科學生120名、理科學生96名;大學,理科大學生72名。訪談對象從問卷對象中隨機抽取,日本中學生15名、台灣國中生15名。
結果顯示:
1. 我國課程綱要在國小、國中階段,對模型的敘述明顯少於日本。此點在訪談、問卷等各項上均能看出台灣的國中生對模型的掌握與了解較日本中學生少。我國課程綱要在高中階段大幅提升本體論相關的模型敘述,使得台灣450名受試者中有332人達「層次3-1」以上,73.8%;日本363名受試者中269人達「層次3-1」以上,74.1%。高層次者比率無明顯差異。
2. 學習日語時「モデル」(模型)原本包含的數項意思中,「塑膠、實體模型」的概念轉由「模型」(もけい)一詞取而代之。這樣的轉變,似乎間接幫助了「モデル」一詞的重新思考。當然,日本中學校學習指導要領亦同時提及了不少「モデル」。對協助學生修正、擴充新的概念有相當程度的幫助。
Abstract
We can see from the history of science, scientists often by creating a model to explain the scientific theory; and to assist in the model to verify current theoretical reasoning, or to produce new scientific theory. With the popularity of Globalization, urban-rural differences, the study of international differences also attention.
To understand the differences betweenTaiwanese students and Japanese students’s understanding of the nature of the model, this Study use Mei-Hung Chiu(2015)NSC’s the nature of the model questionnaire, modified and translated into Japanese. By a Japanese professor of science education in Japan and seven graduate students, and to confirm the contents of the original translation is correct. The participant of this study included Tokyo area in a public school, 158 students, 83 high school students in science; University of Science 61, Arts 61. Taipei, Taiwan area at a public middle school, 8 grade students 162; 12 grade liberal arts students 120, science students 96; University of Science Students 72. Interviewees randomly selected objects from the questionnaire, 15 junior high school students in Japan, and 15 junior high school students in Taiwan.
The results show that Taiwan syllabus at the primary, secondary stage, the model described significantly less than Japan. This point can be seen in the interviews and questionnaires that Taiwanese junior high school students’s understanding of the model is less than Japanese junior high school students. Taiwan syllabus increase ontological related statement of model in high school, so that Taiwan 450 students in 332 levels of 3-1 or more, 73.8%; Japan 363 students in 269 levels of 3-1 more than 74.1%. High levels were not significantly different rate.
Learning Japanese, usually use “モデル” to show the concept of Plastic model or Solid model in the beginning. After learning more Japanese, “模型(もけい)” will replace to show the concept of Plastic model or Solid model. This change can help Japanese students' concept about “モデル” have new understanding . Japan syllabus have a lot of the description of “モデル”, that also help student build up new concept.
參考文獻
一、中文部分
林振欽, & 洪振方. (2010). 學生建模歷程分析與類型之個案研究: 以電腦模擬單擺實驗為例.
林靜雯, & 邱美虹. (2008). 從認知/方法論之向度初探高中學生模型及建模歷程之知識. 科學教育月刊.
林財庫, & 林慧潔. (2003). 高雄市國中小學生氣體迷思概念的認知類型, 層次, 頻率分佈及認知發展的分析研究.
劉俊庚. (2011). 探討模型與建模對於學生原子概念學習之影響. 臺灣師範大學科學教育研究所學位論文, 1-405.
劉俊庚, & 邱美虹. (2010). 從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵. Research and Development, (59), 23-54.
劉俊庚, & 邱美虹. (2012). 我國小學科學課程演進與回顧 (上). 科學教育月刊.
劉俊庚, & 邱美虹. (2012). 我國小學科學課程演進與回顧 (下). 科學教育月刊.
周金城(2008): 探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,第306期,頁10-17。
陳淑筠. (2002). 國內學生自然科學迷思概念研究之後設研究. 國立台東師範學院教育研究所碩士論文 (未出版).
吳明珠(2008): 科學模型本質剖析:認識論面向初探。科學教育月刊,第307期,頁2-8。
教育部. (2003). 國民小學九年一貫課程綱要. 自然與生活科技學習領域: 教育部.
教育部, & 普通高級中學課程發展委員會. (2008). 普通高級中學課程綱要. 教育部.
邱美虹(2008): 模型與建模能力之理論架構。科學教育月刊,第306期,頁2-9。
邱美虹, & 劉俊庚. (2008). 從科學學習的觀點探討模型與建模能力.
邱美虹. (2000). 國民教育階段九年一貫課程網要 [自然與科技] 領域中 [自然科學] 課程綱要之評介. 科學教育, (231), 20-27.
二、日文部分
磯崎哲夫. (2004). イギリスの中等化学教育 (後編): KS4 (14 歳~ 16 歳) と A レベル (16 歳~ 18 歳) の特色 (諸外国では理科カリキュラムをどう学習につなげているか (その 7)). 化学と教育, 52(9), 638-641.
井田暁, & 越桐國雄. (2010). 物理教育における誤概念のデータベース化について.
鈴木宏昭. (2008). 中学生・高校生の" Nature of Science" に関する理解の比較研究. 白鴎大学論集, 23(1), 51-64.
鈴木宏昭. (2009). 米国の理科カリキュラムにおける" Nature of Science" の教授内容: 学年進行による段階的変化に焦点を当てて. 白鴎大学論集, 24(1), 175-190.
中山玄三, & 永光英俊. (1995). 科学的リテラシー育成に重点を置いた小学校理科カリキュラムの開発: 実生活への活用・応用能力を中心として. 熊本大学教育学部紀要. 人文科学, 44, 375-384.
文部科学省(2008): 小学校学習指導要領解説. 理科編:文部科学省.
文部科学省(2008): 中学校学習指導要領解説. 理科編:文部科学省.
文部科学省(2009): 高等学校学習指導要領解説. 理科編:文部科学省.
村上祐. (2010). 小・中理科における望ましい粒子概念教育の提言-国の調査結果の背景および独自調査の分析から.
村上忠幸. (2013). 新しい時代の理科教育への一考察. 教育実践研究紀要= Journal of educational research, (13), 53-62.
渡邉重義, 青井倫子, & 平松義樹. (2009). 理科カリキュラムの連続性に注目した授業研究.
魏明通. (2004). 台湾の高校化学教育 (諸外国では理科カリキュラムをどう学習につなげているか (その 10)). 化学と教育, 52(12), 859-862.
三、英文部分
Andrew Shtulman, Joshua Valcarcel (2012).Scientific knowledge suppresses but does not supplant earlier intuitions. Copyright © 2012 Elsevier B.V. All rights reserved.
Brewer, W., Hendrich, D., & Vosniadou, S. (1987). Alternative knowledge systems: A cross‐cultural study of cosmological schemata. In Second Meeting of the International Society on Cross-Cultural Cognition, Honolulu, HI.
Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In Developing Models in Science Education (pp. 119-135). The Netherlands: Springer.
Chi, M.T.H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), Handbook of research on conceptual change(pp. 61-82). Hillsdale, NJ: Erlbaum.
Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212.
Gentner, D., & Stevens, A. L. (2014). Mental models. Psychology Press.
Giere, R. N. (2010). An agent-based conception of models and scientific representation. Synthese, 172(2), 269-281.
Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In Visualization in science education (pp. 9-27). Springer Netherlands.
Gilbert, J. K. (2013). Representations and models. In Constructing representations to learn in science (pp. 193-198). SensePublishers.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In Developing models in science education (pp. 3-17). Netherland: Springer s.
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple‐model use in grade 11 chemistry. Science Education, 84(3), 352-381.
Hestenes, D. (1987). Toward a modeling theory of physics instruction.American journal of physics, 55(5), 440-454.
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701.
Lee, S. W. Y., Chang, H. Y., & Wu, H. K. (2015). Students’ Views of Scientific Models and Modeling: Do Representational Characteristics of Models and Students’ Educational Levels Matter?. Research in Science Education, 1-24.
Neimark, E. D., & Kagan, J. E. (1987). Adventures in thinking. Harcourt Brace Jovanovich.
Samarapungavan, A., Vosniadou, S., & Brewer, W. F. (1996). Mental models of the earth, sun, and moon: Indian children's cosmologies. Cognitive development, 11(4), 491-521.
Schwartz, R. S., & Lederman, N. G. (2005). What scientists say: scientists’ views of models. Montreal: Paper presented at the The Annual Meeting of the American Educational Research Association.
Sibley, D. F. (2009). A cognitive framework for reasoning with scientific models.Journal of Geoscience Education, 57(4), 255-263.
STELLA VOSNIADOU (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, Vol. 4, pp. 45-69, 1994 Copyright © 1994 Elseviet Science Ltd Printed in Great Britain. All rights reserved
Stepans, J. I., & Kuehn, C. (1985). Children's conceptions of weather. Science and Children, 23 (1), 44-47
Thomas Samuel Kuhn (1962, 1972) The Structure of Scientific Revolutions
Van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141-1153.
Vosniadou, S., & Brewer, W. F. (1990). A cross-cultural investigation of children's conceptions about the Earth, the Sun and the Moon: Greek and American data. Center for the Study of Reading Technical Report; no. 497.