研究生: |
賴昶均 Chang-Chung Lai |
---|---|
論文名稱: |
多孔矽應用於微型直接甲醇燃料電池之擴散層暨觸媒載體之研製 A study on porous silicon as diffusion layers and catalyst support in micro-DMFC application |
指導教授: |
楊啓榮
Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 燃料電池 、甲醇 、多孔矽 、擴散層 |
英文關鍵詞: | fuel cell, methanol, porous silicon, diffusion layer |
論文種類: | 學術論文 |
相關次數: | 點閱:355 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步與環保意識的高漲,人類亟需一種乾淨、無汙染的能量來源,以應用於現今生活中不可或缺的可攜式電子產品。
直接甲醇燃料電池(DMFC, direct methanol fuel cell)被視為最有潛力,將取代目前鋰電池之下一代能源裝置。它具有操作溫度低,啟動速度快,能量密度高,燃料攜帶方便,燃料取得容易等優點。因此,本研究希望將燃料電池微型化,嘗試製造DMFC (micro DMFC),並簡化其組成元件,降低製造成本,以實現整合於可攜式電子產品中的可能性。
本研究分為四大實驗項目:(1) 利用TMAH溶液與添加劑所調配之蝕刻液,進行具凸角保護特色的流道製備;(2) 製造與流道相銜接的多孔矽層,取代碳紙於DMFC中擴散層角色;(3) 比較多孔矽擴散層厚度對DMFC性能之影響;(4) 比較DMFC分別以多孔矽與碳紙做為擴散層之性能差異。
實驗結果顯示,本實驗以廉價的TMAH濕蝕刻技術,添加特殊界面活性劑,成功製造出具凸角蝕刻抑制的375 m深流道結構;此外,厚度高達300 m,且互相聯通的多孔矽擴散層,已藉由光輔助電化學蝕刻 (PAECE, photo-assist electrochemical etching ) 製程實現,並成功的與流道相銜接,達到簡化DMFC結構的目的。
實驗結果顯示,具多孔矽擴散層深度為225 m 的微型甲醇燃料電池,其最大開路電壓為387mV;最大電流密度為1.828 mA/cm2;最大功率密度為0.142 mW/cm2,與具碳紙擴散層的對照組性能(0.150mW/cm2)表現不相上下。多孔矽取代碳紙於微型燃料電池之擴散層應用將指日可待。
關鍵字:燃料電池,甲醇,多孔矽,擴散層。
With the state of the art and the raised environmental consciousness, humans need certain power sources which are clean and environmentally friendly applied on daily-used portable electronic devices.
DMFCs (DMFC, direct methanol fuel cell) were thought as the most promising power suppliers to replace lithium battery in next generation and are characterized with low operation temperature, rapid activation, high energy density, ease of carry and acquirement. Therefore, this research tried to fabricate a DMFC(micro DMFC), simplified its constitution and lower the cost to realize the possibility of DMFC integrated with portable electronic devices.
This research were divided into four items: (1) flow channels realization with convex corner protected were fabricated with etchant composed of TMAH and additive; (2) porous silicon layer connected with flow channel were considered to replace carbon paper as diffusion layer; (3) the comparison of different thickness of porous layer with performances of DMFCs; (4) comparisons of performances resulted from porous silicon and carbon paper as diffusion layers.
Experiments show that the 375 m-deep channel were successfully realized using TMAH solution with specific surfactant added; furthermore, the interconnected, 300 m-deep porous silicon diffusion layer connected with flow channels was achieved by PAECE (photo-assist electrochemical etching) process and the constitution of the DMFC were simplified also.
The designed DMFC with 225 m-thick PS. Layer showed the maximum OCP of 387m V; maximum current density of 1.828 mA/cm2; maximum power density of 0.142 mW/cm2 and nearly equal to the performance (0.150 mW/cm2) of DMFC with carbon diffusion layer. Experimental result showed that using PS. layer in replace of carbon paper would be the promising way in DMFC application.
Keywords: fuel cell, methanol, porous silicon, diffusion layer
Reference
1.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章,
(2003) pp. 141-142.
2.R. Angelucci, A. Poggi, G.C. Cardinali, A. Parisini, A Tagliani, M. Mariasaldi, F. Cavani, "Permeated porous silicon for hydrocarbon sensor fabrication" Sensors and Actuators A , Vol. 74 (1999) pp. 95-99
3.E.J Connolly, G.M. O’Halloran, H.T.M Pham, P.M. Sarro, P.J French, "Compasison of porous silicon, porous polysilicon and porous silicon carbibe as materials for humidity sensing applications" Sensors and Actuators A , Vol. 99, (2002) pp. 25-30
4.P.M. Fauchet, L. Tsybeskov, S.P Duttagupta, K.D. Hirschman, "Stable photoluminescence and electroluminescence from porous silicon" Thin solid films, Vol. 297 (1997) pp. 254-260
5.B.C Chakravarty, Jyoti Tripathi, A.K. Sharma, R. Kumar, K.N. Sood, S.B Samanta, S.N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating" Solar energy material & Solar cells , Vol. 91 (2007) pp. 701-706
6.Shyam Aravamudhan, Abdur Rub Abdur, Rahman, Shekhar Bhansaliet, ”Porous silicon based orientation independent, self-priming micro direct ethanol fuel cell”, Sensors and Actuators A Vol. 123-124 (2005) pp. 497-504
7.賴秋助 等人, "微小型直接甲醇燃料電池系統設計", 工業材料雜誌, 193 (2003) pp. 120-125
8.高志勇 等人, "直接甲醇燃料電池製程技術發展現況", 工業材料雜誌, 193 (2003) pp. 111-119
9.W. Y. Sim, G. Y. Kim, and S. S. Yang, "Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (DMFC) for the medical application", Journal of Microelectromechanical Systems, (2001) pp. 341-344
10.A. Uhir, "Electrolytic shapping of germanium and silicon", Bell System Technical Journal, Vol. 35 (1956) pp. 333-341
11.Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, "Formation and properties of porous silicon and its application", Journal of the Electrochemical society, Vol. 122 (1975) pp. 1351-1358
12.C. Pickering, M. J. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, "Optical studies of the structure of porous films formed in p-type degenerate and non-degenerate silicon", Journal of Physics C: Solid State Physics, Vol. 17 (1984) pp. 6535-6552
13.V. Lehmann, U. Gosele, "Porous silicon formation a quantum wire effect", Applied Physics Letter, Vol. 58 (1991) pp. 856-858
14.A. Richter, "Current-induced light-emission from a porous silicon device", IEEE Electron Device Letter, Vol. 12 (1991) pp. 691-692
15.V. Lehmann, "Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106 (1996) pp. 402-405
16.W. Lang, P. Steiner, H. Sandmaier, “ Porous silicon: a novel material for
Microsystems”, Sensors and Actuators A, Vol. 51 (1995) 31-36
17.C.M.A Ashruf, P. J. French, P.M.M.C Bressers, J.J Kelly,” Galvanic porous silicon formation without external contact”, Sensors and Actuators A Vol. 74 (1999) pp. 118-122
18.V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, Vol. 140 (1993) pp. 2836-2843
19.M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures", Microengineering Applications in Optoelectronics, (1996) pp. 1-9
20.V. Lehmann, "Porous silicon formation and other photoelectrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106 (1996) pp. 402-405
21.Alexandra Splinter, Jorg Sturmann, Walfgang Benecke ”New porous silicon formation technology using internal current generation with galvanic elements”, Sensors and Actuators A Vol. 92 (2001) pp. 394-399
22.S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97-98 (2002) pp. 720-724
23.G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, Vol. 102, (2002) pp. 195-201
24.G. D. Arrigo, S. Coffa, and C. Spinella, "Advanced micromachining processes for micro-opto-electromechanical components and devices", Sensors and Actuators A, Vol. 99 (2002) pp. 112-118
25.H. Ohji, P. J. Trimp, and P. J. French, "Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid", Sensors and Actuators, Vol. 73 (1999) pp. 95-100
26.H. R. Robbins and B. Schwartz, "Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 106 (1959) pp. 505-508.
27.H.R. Robbins and B. Schwartz, "Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2", Journal of the Electrochemical Society, Vol. 107 (1960) pp. 108-111.
28.B. Schwartz and H. R. Robbins, "Chemical etching of silicon-III. A temperature study in the acid system", Journal of the Electrochemical Society, Vol. 108 (1961) pp. 365-372.
29.G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromachining of Silicon", Proceedings of the IEEE, Vol. 86 (1998) pp. 1536-1551.
30.M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6 (1996) pp. 405-409.
31.B. Schwartz and H. R. Robbins, "Chemical etching of silicon", Journal of the Electrochemical Society, Vol. 123 (1976) pp. 1903-1909.
32.A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger, "Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH", Journal of the Electrochemical Society: Solid State, Vol. 114 (1967) pp. 970-973.
33.Walter, "Silicon microstructuring technology", Materials science and engineering, Vol. 17 (1996) pp. 7-17.
34.D. B. Lee, "Anisotropic etching of silicon", Journal of Applied physics, Vol. 40 (1969) pp. 4569-4574.
35.P. J. Hesketh, C. Ju, and S. Gowda, "Surface free energy model of silicon anisotropic etching", Journal of the Electrochemical Society, Vol. 140 (1993) pp. 1080-1084.
36.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part I. Orientation dependence and behavior of passivation layer", Journal of the Electrochemical Society, Vol. 137 (1990) pp. 3612-3626.
37.H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon", Journal of the Electrochemical Society, Vol. 137, (1990) pp. 3626-3632. G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining", Sensors and Actuators A, Vol. 102 (2002) pp. 195-201.
38.D. R. Ciarlo, "Corner compensation structures for (110) oriented silicon", IEEE Micro Robots and Teleoperators Workshop (1987) pp. 1-4.
39.O. Powell and H B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon", Journal of Micromechanics and Microengineering, Vol. 11 (2001) pp. 217-220.
40.鍾震桂 等人,"感應耦合電漿的矽非均性蝕刻技術",第三屆奈米工程暨微系統技術研討會,Vol.3 (1999) pp. 83-87.
41.R. B. Bosch Gmbh, U.S. patents No.4855017, U.S. patents No.4784720, and Germany Patent No. 4241045C1 (1994).
42.M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent advances in silicon etching for MEMS using the ASE process", Sensors and Actuators A, Vol. 74 (1999) pp. 13-17.
43.J. K. Bhardwaj and H. Ashraf, "Advanced silicon etching using high density plasmas", SPIE, Vol. 2639 (1995) pp. 225.
44.楊啟榮 等人, "微系統類LIGA製程光刻技術", 科儀新知, Vol. 22 (2001) pp. 33-45.
45.R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71 (1992) pp. 1-22.
46.K. G. Stanley, Q. M. Jonathan, and W. T. Vanderhoek, "Fabrication of a micromashined micro direct methanol fuel cell", Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering (2002) pp. 450-454
47.G. Q. Lu, C. Y. Wang, T. J. Yen, and X. Zhang, "Development and characterization of a silicon-based micro direct methanol fuel cell", Electrochimica Acta, Vol. 49 (2004) pp. 821-828
48.Y. H. Seo, and Y. H. Cho, "A miniature direct methanol fuel cell using platinum sputtered microcolumn electrodes with limtted amount of fuel", Journal of Microelectromechanical Systems (2003) pp. 375-378
49.S. Onoe, H. Tanaka, K. Hoshino, K. Matsumoto, and I. Shimoyama, " Miniature fuel cell with conductive silicon electrodes", The 13th International Conference on Solid-State Sensors, Actuators and Microsystems (2003) pp. 1296-1299
50.呂俊逸, "質子交換膜燃料電池研究─MEA的製造和性能分析", 中山大學機械工程研究所碩士論文 (2000) pp. 31-32
51.黃秋萍 等人, "直接甲醇燃料電池的核心膜電極組(MEA)", 工業材料雜誌, Vol. 202 (2003) pp.141-150
52.Chii-Rong Yang, Cheng-Hao Yang and Po-Ying Chen, " Study on anisotropic silicon etching characteristics in various surfactant-added tetramethylammonium hydroxide water solution", Journal of the micromechanics and microengineering, Vol. 15 (2005) pp.2028-2037