簡易檢索 / 詳目顯示

研究生: 林柏成
Lin, Po-Chen
論文名稱: 一、利用電子激發態分子探測釕金屬修飾蛋白質內的長距離電子傳遞及檢測十二烷基硫酸鈉的濃度 二、七種台灣精油的化學組成及對大腸桿菌的抗菌效果
(I)Probing long range electron transfer in ruthenium modified proteins and evaluating the SDS concentration by using electronically excited molecules (II) Essential oils from Taiwan: chemical composition and antibacterial activity against Escherichia coli
指導教授: 張一知
Chang, I-Jy
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 168
中文關鍵詞: 閃光淬熄法細胞色素c雙分子淬熄反應籠蔽效應溴化乙錠十二烷基硫酸鈉臨界微胞濃度檢測抗菌性化學組成大腸桿菌精油氣相層析質譜儀
英文關鍵詞: flash-quench, cytochrome c, bimolecular quenching reaction, cage effect, ethidium bromide, sodium dodecyl sulfate, critical micelle concentration, assay, antibacterial activity, chemical composition, Escherichia coli, essential oil, gas chromatography−mass spectrometry
DOI URL: https://doi.org/10.6345/NTNU202204676
論文種類: 學術論文
相關次數: 點閱:290下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成出釕金屬聯吡啶錯合物([Ru((CH3)2bpy)2(im)2]2+與[Ru((COO−)2bpy)2(im)2]2−),並將其修飾在細胞色素c (cyt c)上,再藉由閃光淬熄法來探測蛋白質內的電子傳遞。修飾上推電子取代基的[Ru((CH3)2bpy)2(im)2]2+與Ru(NH3)63+反應後,得到25.1%的激發態淬熄率和42.0%的三價釕金屬([RuIII( )2(im)2]3+)生成率;修飾上拉電子取代基的[Ru((COO−)2bpy)2(im)2]2−則有65.2%激發態淬熄率和19.6%的三價釕金屬生成率。同樣將釕金屬修飾蛋白質與Ru(NH3)63+反應,發現Ru((CH3)2bpy)2(im)(His33)-Fe2+-cyt c的分子內電子傳遞之量子產率是17.6%,而Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c的分子內電子傳遞之量子產率則是11.9%。儘管反應驅動力預測Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c有較大的量子產率,但還要考慮另外兩個變數的影響(籠蔽效應跟化學反應)。
    利用Ru(bpy)2dppz2+的光開關性質來檢測十二烷基硫酸鈉的濃度,隨著十二烷基硫酸鈉的濃度增加,Ru(bpy)2dppz2+的磷光強度也增加。然而,當十二烷基硫酸鈉的濃度小於0.1%時,Ru(bpy)2dppz2+會沉澱析出,因此換用溴化乙錠。在低濃度的十二烷基硫酸鈉(0−0.1%),溴化乙錠的吸收波長最大值會紅位移而螢光強度會降低;當十二烷基硫酸鈉的濃度超過0.1%,溴化乙錠的吸收波長最大值會藍位移而螢光強度會增強;當十二烷基硫酸鈉的濃度超過臨界微胞濃度後,溴化乙錠的螢光強度維持不變。利用上述現象,溴化乙錠可以拿來檢測十二烷基硫酸鈉的濃度。
    利用氣相層析質譜儀分離鑑定七種台灣精油,再透過NIST 08資料庫的比對,可以清楚辨識主要的化學成分。藉由定量分析的實驗,可以得知精油的主要成分含量,比較文獻後發現,不同產地的精油其組成成分會有很大的差異。將七種精油分別加入大腸桿菌培養液中,經過24小時後,發現廣藿香的抑菌效果非常好,只要0.05%的濃度就可以完全抑制大腸桿菌的生長;而丁香羅勒和甜馬鬱蘭的抑菌效果也不差,兩者的最低抑菌濃度都是0.1%。

    Ruthenium bipyridine-type compounds, [Ru((CH3)2bpy)2(im)2]2+ and [Ru((COO−)2bpy)2(im)2]2−, were synthesized to evaluate the protein electron transfer property by flash-quench method. After reacting with Ru(NH3)63+, [Ru((CH3)2bpy)2(im)2]2+, with electron donating substitutents, gives quenching yield of 25.1% and formation yield of [RuIII( )2(im)2]3+ species of 42.0%. While [Ru((COO−)2bpy)2(im)2]2−, with electron withdrawing substitutents, has 65.2% of quenching yield and 19.6% of formation yield of [RuIII( )2(im)2]3+ species. In those ruthenium modified cytochrome c, Ru((CH3)2bpy)2(im)(His33)-Fe2+-cyt c has the largest quantum yield of intramolecular electron transfer (17.6%) and the smallest for Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c (11.9%). Although driving force favors for Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c, cage effect and chemical reaction are other variable factors in the trend.
    Ru(bpy)2dppz2+, known for its light switch property, had been utilized to evaluate the concentration of SDS. As the concentration of SDS increases, the emission intensity of Ru(bpy)2dppz2+ increases. Unfortunately, at the attempt to lower the SDS concentration below 0.1%, Ru(bpy)2dppz2+ precipitates, therefore, ethidium bromide (EtdBr) was employed. In the low concentration of SDS (0−0.1%), the wavelength of absorption maximum red shifts and the emission intensity decreases. While the concentration of SDS is above 0.1%, the wavelength of absorption maximum blue shifts and the emission intensity is recovering. At above the CMC of SDS, the emission intensity remains unchanged and is higher than that without SDS. An assay for evaluating of SDS concentration by EtdBr has been proposed.
    Chemical compositions of seven essential oils from Taiwan had been analyzed by gas chromatography−mass spectroscopy. The eluates had been identified by matching the mass fragment patents to the NIST 08 database. Quantitatively analysis showed the major components are somewhat different from the same essential oils reported that are obtained from other origins. The antibacterial activity of the essential oils against Escherichia coli was evaluated by optical density method. Patchouli is a very effective inhibitor that completely inhibits the growth of E. coli at 0.05%. Clove basil and sweet marjoram are good inhibitors and their upper limits of minimum inhibitory concentration are 0.1%.

    Table of contents List of Figures………………………………………………………………………...iv List of Tables………………………………………………………………………...xiii List of Schemes……………………………………………………………………...xiv Chapter 1………………………………………………………………………………1 Abstract…………………………………………………………………………..2 Introduction………………………………………………………………………3 Experimental Section……………………………………………………………11 Results and Discussion………………………………………………………….18 Electronic absorption and emission spectra of ruthenium model compounds………………………………………………………………...18 Electrochemistry of ruthenium model compounds………………………..19 Radiative and non-radiative decay rate constant of ruthenium model compounds………………………………………………………………...20 Bimolecular quenching reaction of ruthenium model compounds………..22 Driving force dependence of the bimolecular quenching reaction………...24 Comparison of quenching rate constant and driving force of the bimolecular quenching reaction…………………………………………...26 Comparison of the excited state quenching yield and the formation yield of [RuIII(LL)2(im)2]3+ species……………………………………………...29 Photophysical properties of ruthenium modified Fe3+-cytochrome c……..33 Bimolecular quenching reaction of ruthenium modified Fe3+-cytochrome c…………………………………………………………35 Bimolecular quenching reaction of ruthenium modified Fe2+-cytochrome c…………………………………………………………38 Intramolecular electron transfer in ruthenium modified Fe2+-cytochrome c…………………………………………………………40 Driving force dependence of the intramolecular electron transfer reaction…………………………………………………………………….45 Conclusions……………………………………………………………………..49 References………………………………………………………………………51 Supporting Information…………………………………………………………54 Chapter 2……………………………………………………………………………..59 Abstract…………………………………………………………………………60 Introduction……………………………………………………………………..61 Experimental Section…………………………………………………………...65 Results and Discussion………………………………………………………….69 Interaction between Ru(bpy)2dppz2+ and surfactants……………………...69 UV−Visible absorption and luminescence spectra for Ru(bpy)2dppz2+ in SDS aqueous solution……………………………………………………...69 UV−Visible absorption and luminescence spectra for Ru(bpy)2dppz2+ in TX-100 and CTAB aqueous solution……………………………………...72 Summary of the interaction between Ru(bpy)2dppz2+ and surfactants……74 Interaction between EtdBr and surfactants………………………………...75 UV−Visible absorption and luminescence spectra for EtdBr in SDS aqueous solution…………………………………………………………...75 UV−Visible absorption and luminescence spectra for EtdBr in TX-100 aqueous solution…………………………………………….......................84 The effect of micelle formation for EtdBr in SDS and TX-100 aqueous solution…………………………………………………………………….88 UV−Visible absorption and luminescence spectra for EtdBr in CTAB aqueous solution…………………………………………….......................89 Solvatochromic effect for EtdBr in SDS aqueous solution………………..91 Detail discussion with the emissive property of EtdBr in SDS aqueous solution…………………………………………………………………….93 Surfactant chain length effect on the photophysical properties of EtdBr……………………………………………………………………..102 Assay of estimating for the concentration of SDS in aqueous solution….111 Conclusions……………………………………………………………………113 References……………………………………………………………………..116 Supporting Information………………………………………………………..120 Chapter 3……………………………………………………………………………131 Abstract………………………………………………………………………..132 Introduction……………………………………………………………………133 Experimental Section………………………………………………………….135 Results and Discussion………………………………………………………...139 Method development……………………………………………………..139 Qualitative and quantitative analysis of essential oils……………………142 Major component in Taiwan species and comparison with various origins…………………………………………………………………….146 High content of component and its application on biology………………148 Antibacterial activity against E. coli……………………………………..149 Conclusions……………………………………………………………………153 References……………………………………………………………………..154 Supporting Information………………………………………………………..158 List of Figures Chapter 1 Figure 1. Photosynthetic electron transport chain……………………………………..4 Figure 2. Electron transport chain of cellular respiration……………………………...6 Figure 3. Latimer diagram of [Ru(bpy)3]2+ complex………………………………….7 Figure 4. Structure of the ruthenium model compounds……………………………..12 Figure 5. Structure of the ruthenium modified cytochrome c………………………..12 Figure 6. Electronic absorption and emission spectra of ruthenium model compounds in 50 mM NaPi buffer solution………………………………………….19 Figure 7. Cyclic voltammogram of ruthenium model compounds in 50 mM NaPi buffer solution………………………………………………………………………..20 Figure 8. Emission spectra of [Ru((COO−)2bpy)2(im)2]2− with various concentration of Rua63+………………………………………………………………22 Figure 9. Driving force (−deltaGQ) versus natural logarithm of quenching rate constant for the bimolecular quenching reaction between ruthenium model compound and Rua63+………………………………………………………………...25 Figure 10. Driving force dependence of electron transfer rate constants predicted by semi-classical Marcus theory………………………………………………………...27 Figure 11. Nanosecond transient absorption spectra of ruthenium model compounds without and with Rua63+ at the ground state bleach wavelength……………………..30 Figure 12. The absorption spectra of [Ru((CH3)2bpy)2(im)2]2+ with 5 mM Rua63+ before experiment, after emission measurement and after transient absorption measurement………………………………………………………………………….32 Figure 13. Electronic absorption spectra of ruthenium modified Fe3+-cyt c in 50 mM NaPi buffer solution……………………………………………………………..34 Figure 14. Emission spectra of ruthenium modified Fe3+-cyt c in 50 mM NaPi buffer solution………………………………………………………………………..35 Figure 15. Nanosecond transient absorption spectra of ruthenium modified Fe3+-cyt c with Rua63+ at the ground state bleach wavelength……………………….37 Figure 16. Difference absorption spectrum of oxidized and reduced form of cyt c….39 Figure 17. Nanosecond transient absorption spectra of ruthenium modified Fe2+-cyt c with Rua63+ at 550 nm…………………………………………………….41 Figure 18. Nanosecond transient absorption spectra of ruthenium modified Fe2+-cyt c with Rua63+ at 390 nm…………………………………………………….42 Figure 19. Nanosecond transient absorption spectrum of Ru(bpy)2(im)(His33)-Fe2+-cyt c with Rua63+ and the difference absorption spectrum of oxidized and reduced cyt c………………………………………………………...43 Figure 20. Nanosecond transient absorption spectrum of Ru((CH3)2bpy)2(im)(His33)-Fe2+-cyt c with Rua63+ and the difference absorption spectrum of oxidized and reduced dm-cyt c………………………………………….44 Figure 21. Nanosecond transient absorption spectrum of Ru((COO−)2bpy)2(im)(His33)-Fe2+-cyt c with Rua63+ and the difference absorption spectrum of oxidized and reduced dc-cyt c…………………………………………..44 Figure 22. Driving force (−deltaGET) versus natural logarithm of intramolecular electron transfer rate constant for the ruthenium modified Fe2+-cyt c……………….46 Figure 23. Driving force (−deltaGET) versus quantum yields of intramolecular electron transfer for the ruthenium modified Fe2+-cyt c………………………………………47 Figure S1. Emission spectra of [Ru(bpy)2(im)2]2+ with various concentrations of Rua63+………………………………………………………………………………...54 Figure S2. Emission spectra of [Ru((CH3)2bpy)2(im)2]2+ with various concentrations of Rua63+……………………………………………………………...54 Figure S3. The Stern-Volmer plot of emission intensity of [Ru(bpy)2(im)2]2+ with Rua63+…………………………………………………………………………...........55 Figure S4. The Stern-Volmer plot of emission lifetime of [Ru(bpy)2(im)2]2+ with Rua63+…………………………………………………………………………...........55 Figure S5. The Stern-Volmer plot of emission intensity of [Ru((CH3)2bpy)2(im)2]2+ with Rua63+…………………………………………………………………………...56 Figure S6. The Stern-Volmer plot of emission lifetime of [Ru((CH3)2bpy)2(im)2]2+ with Rua63+…………………………………………………………………………...56 Figure S7. The Stern-Volmer plot of emission intensity of [Ru((COO−)2bpy)2(im)2]2− with Rua63+………………………………………………57 Figure S8. The Stern-Volmer plot of emission lifetime of [Ru((COO−)2bpy)2(im)2]2− with Rua63+………………………………………………57 Figure S9. The Stern-Volmer plot of emission lifetime of [Ru(phen)2(im)2]2+ with Rua63+………………………………………………………………………………58 Chapter 2 Figure 1. Structure of EtdBr and Ru(bpy)2dppz2+……………………………………63 Figure 2. Structures of the three kinds of surfactants………………………………...69 Figure 3. UV−Visible absorption spectra for Ru(bpy)2dppz2+ in 0% and 2% of SDS…………………………………………………………………………………...70 Figure 4. Phosphorescence spectra for Ru(bpy)2dppz2+ between 0−2% of SDS…….71 Figure 5. Emission intensity at 635 nm for Ru(bpy)2dppz2+ between 0−2% of SDS…………………………………………………………………………………...72 Figure 6. UV−Visible absorption spectra for Ru(bpy)2dppz2+ in 0% and 2% of TX-100……………………………………………………………………………….73 Figure 7. UV−Visible absorption spectra for Ru(bpy)2dppz2+ in 0% and 2% of CTAB…………………………………………………………………………………74 Figure 8. UV−Visible absorption spectra for EtdBr in various concentrations of SDS…………………………………………………………………………………...76 Figure 9. UV−Visible absorption spectra for diluted EtdBr between 0−2% of SDS…………………………………………………………………………………...77 Figure 10. Fluorescence spectra for EtdBr in various concentrations of SDS……….78 Figure 11. Absorption maximum of n→pi* transition for EtdBr between 0−2% of SDS…………………………………………………………………………………...79 Figure 12. Job plot for EtdBr-SDS complex by monitoring the change of emission intensity at 615 nm…………………………………………………………80 Figure 13. Diagram of the interaction for (a) EtdBr-SDS complex and (b) EtdBr-SDS micelle…………………………………………………………………...81 Figure 14. Calculating the binding constant from the fitting curve for the plot of EtdBr emission intensity at 623 nm versus SDS concentration……………………...82 Figure 15. Emission intensity ratio at 623 nm for EtdBr between 0−2% of SDS……83 Figure 16. UV−Visible absorption spectra for EtdBr between 0−2% of TX-100……84 Figure 17. Fluorescence spectra for EtdBr between 0−2% of TX-100………………85 Figure 18. Emission intensity ratio at 628 nm for EtdBr between 0−2% of TX-100……………………………………………………………………………….85 Figure 19. Diagram of the interaction for EtdBr-TX-100 micelle…………………...87 Figure 20. Absorption maximum of n→pi* transition for EtdBr in SDS and TX-100 solution……………………………………………………………………………….88 Figure 21. Emission intensity ratio for EtdBr in SDS and TX-100 solution…………89 Figure 22. UV−Visible absorption spectra for EtdBr in 0% and 2% of CTAB……...90 Figure 23. Fluorescence spectra for EtdBr in 0% and 2% of CTAB…………………90 Figure 24. UV−Visible absorption spectra of EtdBr in 0% (H2O), 0.1% and 2% SDS aqueous solution and two organic solvent DCM and DMSO………………......92 Figure 25. Resonance structures of ethidium cation…………………………………94 Figure 26. Emission intensity at 615 nm and absorption maximum of n→pi* transition for EtdBr between pH 0−14 in NaPi buffer solution……………………...95 Figure 27. Emission intensity at 610 nm and absorption maximum of n→pi* transition for EtdBr between pH 1−10 in CH3CN……………....................................95 Figure 28. UV−Visible absorption spectrum of ethidium cation with predicted TD-DFT transition……………………………………………………………………97 Figure 29. UV−Visible absorption spectrum of deprotonated ethidium cation (Etd-RH) with predicted TD-DFT transition…………………………………………97 Figure 30. UV−Visible absorption spectrum of deprotonated ethidium cation (Etd-LH) with predicted TD-DFT transition…………………………………………98 Figure 31. Luminescence decay of EtdBr in 0.1% of SDS…………………………..99 Figure 32. Emission intensity ratio at 623 nm and fluorescence lifetime ratio at 615 nm for EtdBr below 0.1% of SDS……………………………………………...100 Figure 33. Emission intensity ratio at 623 nm and fluorescence lifetime ratio at 615 nm for EtdBr below 1% of SDS………………………………………………..101 Figure 34. UV−Visible absorption spectra for EtdBr in 0%, 0.1% and 1% of sodium sulfate………………………………………………………………………102 Figure 35. Fluorescence spectra for EtdBr in 0%, 0.1% and 1% of sodium sulfate……………………………………………………………………………….103 Figure 36. UV−Visible absorption spectra for EtdBr in 0%, 0.1% and 1% of sodium methyl sulfate………………………………………………………………103 Figure 37. Fluorescence spectra for EtdBr in 0%, 0.1% and 1% of sodium methyl sulfate……………………………………………………………………………….104 Figure 38. UV−Visible absorption spectra for EtdBr in 0%, 0.1%, 0.5% and 1% of sodium hexyl sulfate……………………………………………………………..105 Figure 39. Fluorescence spectra for EtdBr in 0%, 0.1%, 0.5% and 1% of sodium hexyl sulfate………………………………………………………………………...105 Figure 40. UV−Visible absorption spectra for EtdBr in 0%, 0.1%, 0.5% and 1% of sodium octyl sulfate……………………………………………………………...106 Figure 41. Fluorescence spectra for EtdBr in 0%, 0.1%, 0.5% and 1% of sodium octyl sulfate…………………………………………………………………………106 Figure 42. UV−Visible absorption spectra for EtdBr between 0−0.1% of sodium tetradecyl sulfate…………………………………………………………………….108 Figure 43. Fluorescence spectra for EtdBr between 0−0.1% of sodium tetradecyl sulfate……………………………………………………………………………….109 Figure 44. Emission intensity ratio at 615 nm for EtdBr between 0−0.1% of sodium tetradecyl sulfate……………………………………………………………110 Figure 45. Calculating the binding constant from the fitting curve for the plot of EtdBr emission intensity at 615 nm versus sodium tetradecyl sulfate concentration………………………………………………………………………..110 Figure 46. Absorption maximum of n→pi* transition and emission intensity ratio at 623 nm for EtdBr between 0−2% of SDS………………………………………..114 Figure 47. Absorption maximum of n→pi* transition and emission intensity ratio at 628 nm for EtdBr between 0−2% of TX-100…………………………………….114 Figure S1. Phosphorescence spectra for Ru(bpy)2dppz2+ between 0−2% of TX-100……………………………………………………………………………...120 Figure S2. Phosphorescence spectra for Ru(bpy)2dppz2+ between 0−2% of CTAB………………………………………………………………………………..120 Figure S3. Fluorescence spectra for diluted EtdBr between 0−2% of SDS………...121 Figure S4. Emission intensity ratio at 620 nm for diluted EtdBr between 0−2% of SDS………………………………………………………………………………….122 Figure S5. UV−Visible absorption spectra for EtdBr in various pH values of NaPi buffer solution………………………………………………………………………122 Figure S6. Fluorescence spectra for EtdBr in various pH values of NaPi buffer solution……………………………………………………………………………...123 Figure S7. UV−Visible absorption spectra for EtdBr in basic condition of CH3CN……………………………………………………………………………...124 Figure S8. Fluorescence spectra for EtdBr in basic condition of CH3CN………….124 Figure S9. UV−Visible absorption spectra for EtdBr in acidic condition of CH3CN……………………………………………………………………………...125 Figure S10. Fluorescence spectra for EtdBr in acidic condition of CH3CN………..125 Figure S11. Luminescence decay of EtdBr in 0.001% of SDS……………………..126 Figure S12. Luminescence decay of EtdBr in 0.005% of SDS……………………..126 Figure S13. Luminescence decay of EtdBr in 0.01% of SDS………………………127 Figure S14. Luminescence decay of EtdBr in 0.05% of SDS………………………127 Figure S15. Luminescence decay of EtdBr in 0.2% of SDS………………………..128 Figure S16. Luminescence decay of EtdBr in 1% of SDS………………………….128 Figure S17. Luminescence decay of EtdBr in pure water…………………………..129 Chapter 3 Figure 1. GC−MS chromatogram of seven essential oils (linear temperature gradient)…………………………………………………………………………….139 Figure 2. GC−MS chromatogram for tea tree essential oil…………………………140 Figure 3. GC−MS chromatogram for rose geranium essential oil………………….141 Figure 4. GC−MS chromatogram of seven essential oils (step temperature gradient)…………………………………………………………………………….141 Figure 5. Growth curves of E. coli in LB medium in the absence and presence of patchouli essential oil……………………………………………………………….150 Figure 6. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of seven essential oils after 24 hours of incubation…………………………………………..152 Figure S1. GC−MS chromatogram for lemon verbena essential oil……………......158 Figure S2. GC−MS chromatogram for sweet marjoram essential oil………………159 Figure S3. GC−MS chromatogram for clove basil essential oil……………………159 Figure S4. GC−MS chromatogram for patchouli essential oil……………………...160 Figure S5. GC−MS chromatogram for rosemary essential oil……………………...160 Figure S6. The regression relationship between the concentration of geraniol and its integrated area of abundance in the GC−MS chromatogram……………………161 Figure S7. The regression relationship between the concentration of 1,8-cineole and its integrated area of abundance in the GC−MS chromatogram……………….161 Figure S8. The regression relationship between the concentration of beta-caryophyllene and its integrated area of abundance in the GC−MS chromatogram……………………………………………………………………….162 Figure S9. Growth curves of E. coli in LB medium in the absence and presence of clove basil essential oil…………………………………………………………..162 Figure S10. Growth curves of E. coli in LB medium in the absence and presence of sweet marjoram essential oil……………………………………………………..163 Figure S11. Growth curves of E. coli in LB medium in the absence and presence of lemon verbena essential oil………………………………………………………163 Figure S12. Growth curves of E. coli in LB medium in the absence and presence of tea tree essential oil………………………………………………………………164 Figure S13. Growth curves of E. coli in LB medium in the absence and presence of rosemary essential oil…………………………………………………………….164 Figure S14. Growth curves of E. coli in LB medium in the absence and presence of rose geranium essential oil……………………………………………………….165 Figure S15. Inhibitory effect of E. coli growth by 0.01%, 0.02%, 0.05% and 0.1% of patchouli essential oil after 24 hours of incubation……………………………...165 Figure S16. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of clove basil essential oil after 24 hours of incubation……………………………….166 Figure S17. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of sweet marjoram essential oil after 24 hours of incubation………………………….166 Figure S18. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of lemon verbena essential oil after 24 hours of incubation…………………………...167 Figure S19. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of tea tree essential oil after 24 hours of incubation……………………………………….167 Figure S20. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of rosemary essential oil after 24 hours of incubation…………………………………168 Figure S21. Inhibitory effect of E. coli growth by 0.01%, 0.05% and 0.1% of rose geranium essential oil after 24 hours of incubation……………………………168 List of Tables Chapter 1 Table 1. Absorption and emission maximum of ruthenium model compounds in 50 mM NaPi buffer solution………………………………………………………….19 Table 2. Photophysical properties of ruthenium model compounds in 50 mM NaPi buffer solution………………………………………………………………………..21 Table 3. Quenching efficiency between ruthenium model compounds and Rua63+….24 Table 4. Driving forces of the bimolecular quenching reaction between ruthenium model compounds and Rua63+………………………………………………………..25 Table 5. Bimolecular quenching reaction between ruthenium model compounds and Rua63+…………………………………………………………………………….31 Table 6. Bimolecular quenching reaction between ruthenium modified Fe3+-cyt c and Rua63+…………………………………………………………………………….36 Table 7. Bimolecular quenching reaction between ruthenium modified Fe2+-cyt c and Rua63+…………………………………………………………………………….38 Table 8. Intramolecular electron transfer rate constants for the ruthenium modified Fe2+-cyt c……………………………………………………………………………..42 Table 9. Intramolecular electron transfer within the ruthenium modified Fe2+-cyt c……………………………………………………………………………..46 Table S1. Supplement for the bimolecular quenching reaction between ruthenium modified Fe3+-cyt c and Rua63+………………………………………………………58 Table S2. Supplement for the bimolecular quenching reaction between ruthenium modified Fe2+-cyt c and Rua63+………………………………………………………58 Chapter 2 Table 1. Absorption and emission maximums of EtdBr in H2O, DCM and DMSO with the specific physical properties of solvents……………………………………..92 Table 2. Fluorescence lifetime and normalized emission intensity of EtdBr in various concentrations of SDS……………………………………………………...100 Chapter 3 Table 1. Volatile components of the seven essential oils and their relative abundance…………………………………………………………………………...143 Table 2. The major components and their structures of the seven essential oils……147 Table 3. Comparison for major components with various origins of tea tree essential oils………………………………………………………………………...148 List of Schemes Chapter 1 Scheme 1. Mechanism of the direct photoinduced electron transfer for Ru2+(bpy)2(dcbpy)-Lys-Fe3+-cyt c……………………………………………………..8 Scheme 2. Mechanism of the flash-quench method for Ru2+(bpy)2(im)(His33)-Fe2+-cyt c……………………………………………………...9 Scheme 3. Synthetic scheme of ruthenium model compounds………………………11 Chapter 2 Scheme 1. Assay of estimating for the concentration of SDS in aqueous solution…112

    Chapter 1
    (1) Witt, H. T. Primary reactions of oxygenic photosynthesis. Ber. Bunsen−Ges. Phys. Chem. 1996, 100, 1923-1942.
    (2) Nugent, J. H. A. Oxygenic photosynthesis. Eur. J. Biochem. 1996, 237, 519-531.
    (3) Hervás, M.; Navarro, J. A.; De la Rosa, M. A. Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc. Chem. Res. 2003, 36, 798-805.
    (4) Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163-170.
    (5) Gust, D.; Moore, T. A.; Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890-1898.
    (6) Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767-776.
    (7) Babcock, G. T.; Wikstrom, M. Oxygen activation and the conservation of energy in cell respiration. Nature 1992, 356, 301-309.
    (8) Ramirez, B. E.; Malmström, B. G.; Winkler, J. R.; Gray, H. B. The currents of life: the terminal electron-transfer complex of respiration. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 11949-11951.
    (9) Brzezinski, P.; Larsson, G. Redox-driven proton pumping by heme-copper oxidases. Biochim. Biophys. Acta−Bioenerg. 2003, 1605, 1-13.
    (10) Winkler, J. R.; Gray, H. B. Electron tunneling in proteins: role of the intervening medium. J. Biol. Inorg. Chem. 1997, 2, 399-404.
    (11) Bertini, I.; Cavallaro, G.; Rosato, A. Cytochrome c: Occurrence and functions. Chem. Rev. 2005, 106, 90-115.
    (12) Wuttke, D. S.; Bjerrum, M. J.; Winkler, J. R.; Gray, H. B. Electron-tunneling pathways in cytochrome c. Science 1992, 256, 1007-1009.
    (13) Langen, R.; Chang, I.-J.; Germanas, J. P.; Richards, J. H.; Winkler, J. R.; Gray, H. B. Electron tunneling in proteins: coupling through a beta strand. Science 1995, 268, 1733-1735.
    (14) Regan, J. J.; Di Bilio, A. J.; Langen, R.; Skov, L. K.; Winkler, J. R.; Gray, H. B.; Onuchic, J. N. Electron tunneling in azurin: the coupling across a β-sheet. Chem. Biol. 1995, 2, 489-496.
    (15) Gray, H. B.; Winkler, J. R. Electron transfer in proteins. Annu. Rev. Biochem. 1996, 65, 537-561.
    (16) Langen, R.; Colón, J. L.; Casimiro, D. R.; Karpishin, T. B.; Winkler, J. R.; Gray, H. B. Electron tunneling in proteins: role of the intervening medium. J. Biol. Inorg. Chem. 1996, 1, 221-225.
    (17) Winkler, J. R.; Di Bilio, A. J.; Farrow, N. A.; Richards, J. H.; Gray, H. B. Electron tunneling in biological molecules. Pure Appl. Chem. 1999, 71, 1753-1764.
    (18) Babini, E.; Bertini, I.; Borsari, M.; Capozzi, F.; Luchinat, C.; Zhang, X.; Moura, G. L. C.; Kurnikov, I. V.; Beratan, D. N.; Ponce, A.; Di Bilio, A. J.; Winkler, J. R.; Gray, H. B. Bond-mediated electron tunneling in ruthenium-modified high-potential iron−sulfur protein. J. Am. Chem. Soc. 2000, 122, 4532-4533.
    (19) Sutin, N.; Creutz, C. In Inorganic and Organometallic Photochemistry; Wrighton, M. S., Ed.; Advances in Chemistry 168; American Chemical Society: Washington, DC, 1978; pp 1-27.
    (20) Durham, B.; Pan, L. P.; Long, J. E.; Millett, F. Photoinduced electron-transfer kinetics of singly labeled ruthenium bis(bipyridine) dicarboxybipyridine cytochrome c derivatives. Biochemistry 1989, 28, 8659-8665.
    (21) Chang, I. J.; Gray, H. B.; Winkler, J. R. High-driving-force electron transfer in metalloproteins: intramolecular oxidation of ferrocytochrome c by Ru(2,2'-bpy)2(im)(His-33)3+. J. Am. Chem. Soc. 1991, 113, 7056-7057.
    (22) Sprintschnik, G.; Sprintschnik, H. W.; Kirsch, P. P.; Whitten, D. G. Photochemical reactions in organized monolayer assemblies. 6. Preparation and photochemical reactivity of surfactant ruthenium(II) complexes in monolayer assemblies and at water-solid interfaces. J. Am. Chem. Soc. 1977, 99, 4947-4954.
    (23) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium. Inorg. Chem. 1978, 17, 3334-3341.
    (24) Johnson, E. C.; Sullivan, B. P.; Salmon, D. J.; Adeyemi, S. A.; Meyer, T. J. Synthesis and properties of the chloro-bridged dimer [(bpy)2RuCl]22+ and its transient 3+ mixed-valence ion. Inorg. Chem. 1978, 17, 2211-2215.
    (25) Durham, B.; Pan, L. P.; Hahm, S.; Long, J.; Millett, F. In Electron Transfer in Biology and the Solid State; Johnson, M. K., King, R. B., Kurtz, D. M., Jr., Kutal, C., Norton, M. L., Scott, R. A., Eds.; Advances in Chemistry 226; American Chemical Society: Washington, DC, 1989; pp 181-193.
    (26) Reddy, K. B.; Cho, M.-o. P.; Wishart, J. F.; Emge, T. J.; Isied, S. S. cis-Bis(bipyridine)ruthenium imidazole derivatives: A spectroscopic, kinetic, and structural study. Inorg. Chem. 1996, 35, 7241-7245.
    (27) 錢大恩, 國立台灣師範大學化學研究所碩士論文, 2006年.
    (28) Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985, 811, 265-322.
    (29) Marcus, R. A. On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966-978.
    (30) Brown, G. M.; Sutin, N. A comparison of the rates of electron exchange reactions of ammine complexes of ruthenium(II) and -(III) with the predictions of adiabatic, outer-sphere electron transfer models. J. Am. Chem. Soc. 1979, 101, 883-892.
    (31) Cardoso, C. R.; Lima, M. V. S.; Cheleski, J.; Peterson, E. J.; Venâncio, T.; Farrell, N. P.; Carlos, R. M. Luminescent ruthenium complexes for theranostic applications. J. Med. Chem. 2014, 57, 4906-4915.
    (32) Mines, G. A.; Bjerrum, M. J.; Hill, M. G.; Casimiro, D. R.; Chang, I. J.; Winkler, J. R.; Gray, H. B. Rates of heme oxidation and reduction in Ru(His33)cytochrome c at very high driving forces. J. Am. Chem. Soc. 1996, 118, 1961-1965.
    (33) Winkler, J. R.; Gray, H. B. Electron transfer in ruthenium-modified proteins. Chem. Rev. 1992, 92, 369-379.

    Chapter 2
    (1) Fenn, J.; Mann, M.; Meng, C.; Wong, S.; Whitehouse, C. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
    (2) Covey, T. R.; Huang, E. C.; Henion, J. D. Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. Anal. Chem. 1991, 63, 1193-1200.
    (3) Chait, B.; Kent, S. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science 1992, 257, 1885-1894.
    (4) Mann, M.; Wilm, M. Electrospray mass spectrometry for protein characterization. Trends. Biochem. Sci. 1995, 20, 219-224.
    (5) Wilm, M.; Shevchenko, A.; Houthaeve, T.; Breit, S.; Schweigerer, L.; Fotsis, T.; Mann, M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996, 379, 466-469.
    (6) Bruce, J. E.; Anderson, G. A.; Smith, R. D. “Colored” noise waveforms and quadrupole excitation for the dynamic range expansion of Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 1996, 68, 534-541.
    (7) O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007-4021.
    (8) Strupat, K.; Karas, M.; Hillenkamp, F.; Eckerskorn, C.; Lottspeich, F. Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal. Chem. 1994, 66, 464-470.
    (9) Ogorzalek Loo, R. R.; Stevenson, T. I.; Mitchell, C.; Loo, J. A.; Andrews, P. C. Mass spectrometry of proteins directly from polyacrylamide gels. Anal. Chem. 1996, 68, 1910-1917.
    (10) Hager, D. A.; Burgess, R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal. Biochem. 1980, 109, 76-86.
    (11) Beavis, R. C.; Chait, B. T. High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry. Anal. Chem. 1990, 62, 1836-1840.
    (12) Mock, K. K.; Sutton, C. W.; Cottrell, J. S. Sample immobilization protocols for matrix-asssisted laser-desorption mass spectrometry. Rapid Commun. Mass Sp. 1992, 6, 233-238.
    (13) Cohen, S. L.; Chait, B. T. Mass spectrometry of whole proteins eluted from sodium dodecyl sulfate–polyacrylamide gel electrophoresis gels. Anal. Biochem. 1997, 247, 257-267.
    (14) Turro, N. J.; Grätzel, M.; Braun, A. M. Photophysical and photochemical processes in micellar systems. Angew. Chem., Int. Ed. 1980, 19, 675-696.
    (15) Granzhan, A.; Ihmels, H.; Viola, G. 9-Donor-substituted acridizinium salts:  Versatile environment-sensitive fluorophores for the detection of biomacromolecules. J. Am. Chem. Soc. 2007, 129, 1254-1267.
    (16) Paul, B. K.; Ray, D.; Guchhait, N. Binding interaction and rotational-relaxation dynamics of a cancer cell photosensitizer with various micellar assemblies. J. Phys. Chem. B 2012, 116, 9704-9717.
    (17) Stevenson, P.; Sones, K. R.; Gicheru, M. M.; Mwangi, E. K. Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya. Acta Trop. 1995, 59, 77-84.
    (18) Olmsted, J.; Kearns, D. R. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry 1977, 16, 3647-3654.
    (19) Waring, M. J. Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 1965, 13, 269-282.
    (20) Lepecq, J. B.; Paoletti, C. A fluorescent complex between ethidium bromide and nucleic acids: Physical—chemical characterization. J. Mol. Biol. 1967, 27, 87-106.
    (21) Phukan, S.; Mitra, S. Fluorescence behavior of ethidium bromide in homogeneous solvents and in presence of bile acid hosts. J. Photochem. Photobiol., A 2012, 244, 9-17.
    (22) Friedman, A. E.; Chambron, J. C.; Sauvage, J. P.; Turro, N. J.; Barton, J. K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 1990, 112, 4960-4962.
    (23) Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737-738.
    (24) Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051-3058.
    (25) Friedman, A. E.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Luminescence of ruthenium(II) polypyridyls: evidence for intercalative binding to Z-DNA. Nucleic Acids Res. 1991, 19, 2595-2602.
    (26) Stemp, E. D. A.; Barton, J. K. The flash−quench technique in protein−DNA electron transfer: Reduction of the guanine radical by ferrocytochrome c. Inorg. Chem. 2000, 39, 3868-3874.
    (27) Stemp, E. D. A.; Arkin, M. R.; Barton, J. K. Oxidation of guanine in DNA by Ru(phen)2(dppz)3+ using the flash-quench technique. J. Am. Chem. Soc. 1997, 119, 2921-2925.
    (28) Arkin, M. R.; Stemp, E. D. A.; Turro, C.; Turro, N. J.; Barton, J. K. Luminescence quenching in supramolecular systems: A comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. J. Am. Chem. Soc. 1996, 118, 2267-2274.
    (29) Pal, S. K.; Mandal, D.; Bhattacharyya, K. Photophysical processes of ethidium bromide in micelles and reverse micelles. J. Phys. Chem. B 1998, 102, 11017-11023.
    (30) Amouyal, E.; Homsi, A.; Chambron, J.-C.; Sauvage, J.-P. Synthesis and study of a mixed-ligand ruthenium(II) complex in its ground and excited states: bis(2,2'-bipyridine)(dipyrido[3,2-a:2',3'-c]phenazine-N4N5)ruthenium(II). J. Chem. Soc., Dalton Trans. 1990, 1841-1845.
    (31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2009.
    (32) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222.
    (33) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654-3665.
    (34) Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 2006, 124, 094107.
    (35) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999-3094.
    (36) Chambron, J.-C.; Sauvage, J.-P. Ru(bipy)2dppz2+: a highly sensitive luminescent probe for micellar sodium dodecyl sulfate solutions. Chem. Phys. Lett. 1991, 182, 603-607.
    (37) Rosen, M. J. In Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, 2004; pp 105-177.
    (38) Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319-2358.
    (39) Miller, K. J. Additivity methods in molecular polarizability. J. Am. Chem. Soc. 1990, 112, 8533-8542.
    (40) Marcus, Y. The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 1993, 22, 409-416.
    (41) Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18, 145-164.
    (42) Freed, K. F.; Jortner, J. Multiphonon processes in the nonradiative decay of large molecules. J. Chem. Phys. 1970, 52, 6272-6291.

    Chapter 3
    (1) Tisserand, R. The art of aromatherapy; C.W. Daniel Co: Saffron Walden, 1985.
    (2) Hopkins, C. Thorsons principles of aromatherapy; Thorsons: London, 1996.
    (3) Diego, M. A.; Jones, N. A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; Galamaga, M.; McAdam, V.; Galamaga, R. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int. J. Neurosci. 1998, 96, 217-224.
    (4) Kovar, K. A.; Gropper, B.; Friess, D.; Ammon, H. P. T. Blood levels of 1,8-cineole and locomotor activity of mice after inhalation and oral administration of rosemary oil. Planta Med. 1987, 53, 315-318.
    (5) Moss, M.; Cook, J.; Wesnes, K.; Duckett, P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int. J. Neurosci. 2003, 113, 15-38.
    (6) Herz, R. S. Aromatherapy facts and fictions: a scientific analysis of olfactory effects on mood, physiology and behavior. Int. J. Neurosci. 2009, 119, 263-290.
    (7) Moss, M.; Oliver, L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther. Adv. Psychopharmacol. 2012, 2, 103-113.
    (8) Mahesh, B.; Satish, S. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J. Agric. Sci. 2008, 4, 839-843.
    (9) Bobbarala, V.; Katikala, P. K.; Naidu, K. C.; Penumajji, S. Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger F2723. Indian J. Sci. Technol. 2009, 2, 87-90.
    (10) Zoubiri, S.; Baaliouamer, A. Chemical composition and insecticidal properties of some aromatic herbs essential oils from Algeria. Food Chem. 2011, 129, 179-182.
    (11) Sridhar, S. R.; Rajagopal, R. V.; Rajavel, R.; Masilamani, S.; Narasimhan, S. Antifungal activity of some essential oils. J. Agric. Food Chem. 2003, 51, 7596-7599.
    (12) Lee, C.-J.; Chen, L.-W.; Chen, L.-G.; Chang, T.-L.; Huang, C.-W.; Huang, M.-C.; Wang, C.-C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal. 2013, 21, 169-176.
    (13) Pérez-González, S.; Zavala-Sánchez, M. A.; Arias-García, L.; Ramos-López, M. A. Anti-inflammatory activity of some essential oils. J. Essent. Oil Res. 2011, 23, 38-44.
    (14) Güllüce, M.; Sökmen, M.; Daferera, D.; Aǧar, G.; Özkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Şahi̇n, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958-3965.
    (15) Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485-2489.
    (16) Kováts, E. Gas-chromatographische charakterisierung organischer verbindungen. teil 1: retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Hel. Chim. Acta 1958, 41, 1915-1932.
    (17) van Den Dool, H.; Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463-471.
    (18) Pino, J. A.; Mesa, J.; Munoz, Y.; Marti, M. P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213-2223.
    (19) Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003, 51, 3294-3301.
    (20) Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822-1828.
    (21) Ponce, A. G.; Fritz, R.; del Valle, C.; Roura, S. I. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Sci. Technol. 2003, 36, 679-684.
    (22) Yin, H.-W. Yield and composition variation of essential oil from leaves of different Cinnamomum osmophloeum Kanehira clones in Taiwan. Q. J. Chin. For. 1991, 24, 83-104.
    (23) Wang, C.-L.; Yin, H.-W. The locational and seasonal variations of leaf essential oil from cultivated Cinnamomum osmophloeum Kaneh. Taiwan J. For. Sci. 1991, 6, 313-328.
    (24) Romeo, F. V.; De Luca, S.; Piscopo, A.; De Salvo, E.; Poiana, M. Effect of some essential oils as natural food preservatives on commercial grated carrots. J. Essent. Oil Res. 2010, 22, 283-287.
    (25) Freire, C. M. M.; Marques, M. O. M.; Costa, M. Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. J. Ethnopharmacol. 2006, 105, 161-166.
    (26) Lemos, J. d. A.; Passos, X. S.; Fernandes, O. d. F. L.; Paula, J. R. d.; Ferri, P. H.; Souza, L. K. H. e.; Lemos, A. d. A.; Silva, M. d. R. R. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Mem. Inst. Oswaldo Cruz 2005, 100, 55-58.
    (27) Peterson, A.; Machmudah, S.; Roy, B. C.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 2006, 81, 167-172.
    (28) Daferera, D. J.; Tarantilis, P. A.; Polissiou, M. G. Characterization of essential oils from Lamiaceae species by Fourier transform raman spectroscopy. J. Agric. Food Chem. 2002, 50, 5503-5507.
    (29) Šipailieneė, A.; Venskutonis, P. R.; Baranauskienė, R.; Šarkinas, A. Antimicrobial activity of commercial samples of thyme and marjoram oils. J. Essent. Oil Res. 2006, 18, 698-703.
    (30) Donelian, A.; Carlson, L. H. C.; Lopes, T. J.; Machado, R. A. F. Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. J. Supercrit. Fluid. 2009, 48, 15-20.
    (31) Verma, R. S.; Padalia, R. C.; Chauhan, A. Assessment of similarities and dissimilarities in the essential oils of patchouli and Indian Valerian. J. Essent. Oil Res. 2012, 24, 487-491.
    (32) Daferera, D. J.; Ziogas, B. N.; Polissiou, M. G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576-2581.
    (33) Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879-7885.
    (34) Hammer, K. A.; Carson, C. F.; Riley, T. V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853-860.
    (35) Flores, F. C.; Lima, J. A.; Ribeiro, R. F.; Alves, S. H.; Rolim, C. M. B.; Beck, R. C. R.; Silva, C. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia 2013, 175, 281-286.
    (36) Hart, P. H.; Brand, C.; Carson, C. F.; Riley, T. V.; Prager, R. H.; Finlay-Jones, J. J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619-626.
    (37) Caldefie-Chézet, F.; Fusillier, C.; Jarde, T.; Laroye, H.; Damez, M.; Vasson, M. P.; Guillot, J. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother. Res. 2006, 20, 364-370.
    (38) Carson, C. F.; Riley, T. V. Antimicrobial activity of the essential oil of Melaleuca alternifolia. Lett. Appl. Microbiol. 1993, 16, 49-55.
    (39) Cox, S. D.; Mann, C. M.; Markham, J. L.; Bell, H. C.; Gustafson, J. E.; Warmington, J. R.; Wyllie, S. G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170-175.
    (40) Cox, S. D.; Mann, C. M.; Markham, J. L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492-497.
    (41) Kim, H.-J.; Chen, F.; Wu, C.; Wang, X.; Chung, H. Y.; Jin, Z. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. J. Agric. Food Chem. 2004, 52, 2849-2854.
    (42) Rudbäck, J.; Bergström, M. A.; Börje, A.; Nilsson, U.; Karlberg, A.-T. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem. Res. Toxicol. 2012, 25, 713-721.
    (43) Shellie, R.; Marriott, P.; Zappia, G.; Mondello, L.; Dugo, G. Interactive use of linear retention indices on polar and apolar columns with an MS-library for reliable characterization of Australian tea tree and other Melaleuca sp. oils. J. Essent. Oil Res. 2003, 15, 305-312.
    (44) Kawakami, M.; Sachs, R. M.; Shibamoto, T. Volatile constituents of essential oils obtained from newly developed tea tree (Melaleuca alternifolia) clones. J. Agric. Food Chem. 1990, 38, 1657-1661.
    (45) Verghese, J.; Jacob, C. V.; Kartha, C. V. K.; McCarron, M.; Mills, A. J.; Whittaker, D. Indian tea tree (Melaleuca alternifolia Cheel) essential oil. Flavour Frag. J. 1996, 11, 219-221.
    (46) Silva, C. J.; Barbosa, L. C. A.; Maltha, C. R. A.; Pinheiro, A. L.; Ismail, F. M. D. Comparative study of the essential oils of seven Melaleuca (Myrtaceae) species grown in Brazil. Flavour Frag. J. 2007, 22, 474-478.
    (47) Lee, S.-J.; Umano, K.; Shibamoto, T.; Lee, K.-G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131-137.
    (48) Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J. Agric. Food Chem. 2003, 51, 1566-1570.
    (49) Carson, C. F.; Hammer, K. A.; Riley, T. V. Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50-62.
    (50) Gustafson, J. E.; Liew, Y. C.; Chew, S.; Markham, J.; Bell, H. C.; Wyllie, S. G.; Warmington, J. R. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 194-198.

    下載圖示
    QR CODE