簡易檢索 / 詳目顯示

研究生: 鍾鎮宇
論文名稱: 1. 立體化學與藥物活性探討:類石膽酸衍生物與唾液酸轉移酶抑制劑 2. 藥物-生物素的結合與免疫沉澱應用
指導教授: 李文山
Li, Wen-Shan
黃文彰
Huang, Wen-Chang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 187
中文關鍵詞: 石膽酸唾液酸轉移酶抑制劑免疫沉澱應用
英文關鍵詞: lithocholic acid, sialyltransferase inhibitors, applications in immunoprecipitation
論文種類: 學術論文
相關次數: 點閱:214下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分:立體化學與藥物活性探討:類石膽酸衍生物與唾液酸轉移酶抑制劑

    石膽酸以及其衍生物以被證實是唾液酸轉移酶抑制劑,而且在MDA-MB-231乳癌細胞具有抗轉移功效。本論文探討,改變石膽酸3號羥基位相合成出類石膽酸與類石膽酸衍生物,並從Wound healing assay得知化合物3、11、17、20、23、25、27具有抗癌細胞轉移的能力,並藉由HPLC assay證明化合物25、27對唾液酸轉移酶α-2,6(N)-ST具有抑制效果。所以,類石膽酸衍生物不會因改變3號羥基位,而失做為唾液酸轉移酶抑制劑的能力。

    第二部分:藥物-生物素結合物與免疫沉澱應用

    鏈霉親和素與生物素間具有很強的親和力,生醫檢驗上廣泛利用此性質進行蛋白質的免疫沉澱純化。本論文將藥物SK228與NBD-Asp-LA,分別修飾上生物素,藉此探討藥物可能的生物機制。化合物43因生物活性下降太多,無法藉由免疫沉澱純化出蛋白質。化合物49經Wound healing assay與HPLC assay,確定化合物49仍然具有生物活性,可以提供免疫沉澱純化蛋白質。

    Part I: Impact of stereochemistry in biological properties of sialyltransferase (ST) inhibitors: Iso-lithocholic acid analogues

    Lithocholic acid analogues, a series of sialyltransferase inhibitors, are later confirmed by our laboratory to suppress cancer metastasis in breast cancer cells and lung cancer cells in vitro and in vivo. Here, reversal of stereochemistry of hydroxyl group in C3 position of lithocholic acid, iso-lithocholic acid, is developed and synthesized. Biological evaluation of iso-lithocholic acid and its analogues (3、11、17、20、23、25、27) show that most of them effectively suppress metastasis of breast cancer cell using wound healing assay. Especially, compound 25 and 27 show ability of inhibiting α-2,6(N)-ST activity by the method of HPLC assay, developed in our laboratory previously. In summary, iso-lithocholic acid analogues with opposite stereochemistry (versus lithocholic acid) exhibit important therapeutic values relating not only to inhibitory manner of ST but also to anti-metastatic behaviors of cancer cell lines.

    Part II: Biotin-conjugated anticancer agents and their applications in immunoprecipitation

    In cell biology, utilization of high affinity between streptavidin and biotin is commonly used in protein targeting, purification and enhancement. We modify and prepare anticancer agents, SK228 and NBD-Asp-LA, by conjugation with biotin and use them to identify and recognize their biological partners, the proteins. Due to the reduction of antiproliferative activity of biotin-conjugated SK228, we cannot detect any proteins after immunoprecipitation assay. On the other hand, biotin-conjugated NBD-Asp-LA shows the effective inhibition potency against sialyltransferase and its application to catch biological target protein will be evaluated later using immunoprecipitation assay.

    第一部分: 立體化學與藥物活性探討:類石膽酸衍生物與唾液酸轉移酶抑制劑………………1 1-1唾液酸(sialic acid)…………………………………………………………1 1-2 唾液酸轉移酶(sialyltransferase)………………………………………2 1-3 唾液酸轉移酶抑制劑 (sialyltransferase inhibitor)……………3 1-4 石膽酸(Lithocholic acid)…………………………………………………7 1-5 石膽酸 (Lithocholic acid)衍生物抑制劑………………………………7 1-6 立體化學(Stereochemistry)與藥物活性…………………………………10 2 結果與討論……………………………………………………………………………12 2-1 實驗動機……………………………………………………………………………12 2-2 合成類石膽酸(iso-Lithocholic acid)化合物…………………………13 2-3 合成類石膽酸(Iso-Lithocholic acid)-胺基酸衍生物………………14 2-4 生物活性討論………………………………………………………………………18 2-5結論……………………………………………………………………………………32 第二部分: 藥物-生物素結合物與免疫沉澱應用……………………………………………………33 3 導論………………………………………………………………………………………33 3-1 親和層析(Affinity chromatography)……………………………………34 3-2 鏈霉親和素(Streptavidin)與生物素(Biotin)………………………34 3-3 吲哚衍生藥物………………………………………………………………………35 3-4 新型吲哚抗癌化合物SK228………………………………………………………39 4 結果與討論………………………………………………………………………………41 4-1 實驗動機……………………………………………………………………………41 4-2 合成Sk228-Biotin結合物………………………………………………………42 4-3 Sk228-Biotin結合物生物活性討論……………………………………………48 4-4結論……………………………………………………………………………………50 4-5合成NBD-Asp-LA-Biotin結合物………………………………………………51 4-6 NBD-Asp-LA-Biotin結合物生物活性討論……………………………………55 4-7 結論…………………………………………………………………………………61 5 實驗儀器………………………………………………………………………………62 6 實驗藥品………………………………………………………………………………64 7 實驗方法………………………………………………………………………………68 8 參考文獻………………………………………………………………………………107 9 光譜附圖………………………………………………………………………………118

    1. Varki, N. M.; Varki, A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. InVest. 2007, 87, 851–857.
    2. Sato, C. Chain Length Diversity of Sialic Acids and Its Biological Significance. Trends Glycosci. Glycotechnol. 2004, 16, 331–344.
    3. Angata, T.; Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 2002, 102, 439–469
    4. Malykh, Y. N.; Schauer, R.; Shaw, L. N-glycolylneuraminic acid in human tumours. Biochimie 2001, 83, 623–634.
    5. Bast, R. C.; Bates, S.; Bredt, A. B.; Desch, C. E.; Fritsche, H.; Fues, L.; Hayes, D. F.; Kemeny, N. E.; Kragen, M.; Jessup, J.; Locker, G. Y.; Macdonald, J. S.; Mennel, R. G.; Norton, L.; Ravdin, P.; Smith, T. J.; Taube, S.; Winn, R. J. Clinical practice guidelines for the use of tumor markers in breast and colorectal cancer. J. Clin. Oncol. 1996, 14, 2843–2877.
    6. Ajioka, Y.; Allison, L. J.; Jass, J. R. Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J. Clin. Pathol. 1996, 49, 560–564.
    7. Kalela, A.; Ponnio, M.; Koivu, T. A.; Hoyhtya, M.; Huhtala, H.; Sillanaukee, P.; Nikkari, S. T. Association of serum sialic acid and MMP-9 with lipids and inflammatory markers. Eur. J. Clin. InVest. 2000, 30, 99–104.
    8. Crocker, P. R.; Hartnell, A.; Munday, J.; Nath, D. The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycoconjugate J. 1997, 14, 601–609.
    9. Corfield, A. P.; Williams, A. J. K.; Clamp, J. R.; Wagner, S. A.; Mountford, R. A. Degradation by bacterial enzymes of colonic mucus from normal subjects and patients with inflammatory bowel-disease - the role of sialic-acid metabolism and the detection of a novel o-acetylsialic acid esterase. Clin. Sci. 1988, 74, 71–78.
    10. Gee, G. V.; Dugan, A. S.; Tsomaia, N.; Mierke, D. F.; Atwood, W. J. The role of sialic acid in human polyomavirus infections. Glycoconjugate J. 2006, 23, 19–26.
    11. Alexander, D. A.; Dimock, K. Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 2002, 76, 11265–11272.
    12. Ciarlet, M.; Crawford, S. E.; Estes, M. K. Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains. J. Virol. 2001, 75, 11834–11850.
    13. Huberman, K.; Peluso, R. W.; Moscona, A. Hemagglutinin-neuraminidase of human parainfluenza-3 – role of the neuraminidase in the viral life-cycle. Virology 1995, 214, 294–300.
    14. Harduin-Lepers, A.; Vallejo-Ruiz, V.; Krzewinski-Recchi, M. A.; Samyn-Petit, B.; Julien, S.; Delannoy, P. The human sialyltransferase family. Biochimie 2001, 83, 727–737.
    15. Drinnan, N.B.; Halliday, J.; Ramsdale, T. Inhibitors of sialyltransferases: potential roles in tumor growth and metastasis. Mini. Rev. Med. Chem. 2003, 3, 501–17.
    16. Dall’Olio, F.; Chiricolo, M. Sialyltransferases in cancer. Glycoconj. J. 2001, 18, 841–850.
    17. Harvey, B. E.; Toth, C. A,; Wagner, H. E.; Steele, G. D. Jr.; Thomas, P. Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Res. 1992, 52, 1775–1779.
    18. Majuri, M. L.; Niemela, R.; Tiisala, S.; Renkonen, O.; Renkonen, R. Expression and function of alpha 2,3-sialyl- and alpha 1,3/1,4-fucosyltransferases in colon adenocarcinoma cell lines: role in synthesis of E-selectin counter-receptors. Int. J. Cancer 1995, 63, 551–559.
    19. Yogeeswaran, G.; Salk, P. L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 1981, 212, 1514–1516.
    20. Dennis, J.; Waller, C.; Timpl, R.; Schirrmacher, V. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 1982, 300, 274–276.
    21. Baker, M. A.; Taub, R. N.; Kanani, A.; Brockhausen, I.; Hindenburg, A. Increased activity of a specific sialyltransferase in chronic myelogenous leukemia. Blood 1985, 66, 1068–1071.
    22. Petretti, T.; Kemmner, W.; Schulze, B.; Schlag, P. M. Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 2000, 46, 359–366.
    23. Burchell, J.; Poulsom, R.; Hanby, A.; Whitehouse, C.; Cooper, L.; Clausen, H. et al. An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 1999, 9, 1307–1311.
    24. Recchi, M. A.; Hebbar, M.; Hornez, L.; Harduin-Lepers, A.; Peyrat, J. P. Delannoy P. Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res. 1998, 58, 4066–4070.
    25. Kakeji, Y.; Maehara, Y.; Morita, M.; Matsukuma, A.; Furusawa, M.; Takahashi, I. et al. Correlation between sialyl Tn antigen and lymphatic metastasis in patients with Borrmann type IV gastric carcinoma. Br. J. Cancer 1995, 71, 191–195.
    26. Gretschel, S.; Haensch, W.; Schlag, P. M.; Kemmner, W. Clinical relevance of sialyltransferases ST6GAL-I and ST3GAL-III in gastric cancer. Oncology 2003, 65, 139–145.
    27. Videira, P. A.; Correia, M.; Malagolini, N.; Crespo, H. J.; Ligeiro, D.; Calais, F. M. et al. ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer 2009, 9, 357.
    28. Davidson, B.; Berner, A.; Nesland, J. M.; Risberg, B.; Kristensen, G. B.; Trope C. G. et al. Carbohydrate antigen expression in primary tumors, metastatic lesions, and serous effusions from patients diagnosed with epithelial ovarian carcinoma: evidence of up-regulated Tn and Sialyl Tn antigen expression in effusions. Hum. Pathol. 2000, 31, 1081–1087.
    29. Hedlund, M.; Ng, E.; Varki, A.; Varki, N. M. alpha 2–6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res. 2008, 68, 388–394.
    30. Tei, K.; Kawakami-Kimura, N.; Taguchi, O.; Kumamoto, K.; Higashiyama, S.; Taniguchi, N. et al. Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res. 2002, 62, 6289–6296.
    31. Schaub, C.; Müller, B.; Schmidt, R. R. Sialyltransferase inhibitors based on CMP-quinic acid. Eur. J. Org. Chem. 2000, 9, 1745-1758.
    32. Jung, K. H.; Schworer, R.; Schmidt, R. R. Sialyltransferase Inhibitors. Trends Glycosci. Glycotechnol. 2003, 15, 275-289.
    33. Wu, C. Y.; Hsu, C. C.; Chen, S. T.; Tsai, Y. C. Soyasaponin I, a potent and specific sialyltransferase inhibitor. Biochem. Biophys. Res. Commun. 2001, 284, 466–9.
    34. Hsu, C. C.; Lin, T. W.; Chang, W. W.; Wu, C. Y.; Lo, W. H.; Wang, P. H. et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecol. Oncol. 2005, 96, 415–422.
    35. Chang, W. W.; Yu, C. Y.; Lin, T. W.; Wang, P. H.; Tsai, Y. C. Soyasaponin I decreases the expression of alpha2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem. Biophys. Res. Commun. 2006, 341, 614–619.
    36. Ogawa, A.; Murate, T.; Suzuki, M.; Nimura, Y.; Yoshida, S. J. Lithocholic acid, a putative tumor promoter, inhibits mammalian DNA polymerase beta. Japan. J. Cancer Res. 1998, 89, 1154-1159.
    37. Mizushina, Y.; Kasai, N.; Sufawara, F.; Yoshida, H.; Sakaguchi, K. J. Three-dimensional structural model analysis of the binding site of lithocholic acid, an inhibitor of DNA polymerase beta and DNA topoisomerase II. Biochem. 2001, 130, 657-664.
    38. Chang, K. H.; Lee, L.; Chena, J.; Li, W. S. Lithocholic acid analogues, new and potent α-2,3-sialyltransferase inhibitors. Chem. Comm. 2006, 7, 629-631
    39. Chen, J. Y.; Tang, Y. A.; Huang, S. M.; Juan, H. F.; Wu, L. W.; Sun, Y. C.; Wang, S. C.; Wu, K. W.; Balraj, G.; Chang, T. T.; Li, W. S.; Cheng, H. C.; Wang, Y. C. A novel sialyltransferase inhibitor suppresses FAK/Paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res. 2011, 71, 473-483.
    40. Chang, C. H.; Wang, C. H.; Chang, C. H.; More, S.; Li, W. S.; Hung, W. C. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling. J. Cell. Physiol. 2010, 223, 492-499.
    41. McConathy, J.; Owens, M. Stereochemistry in Drug Action. Prim. Care. Companion. J. Clin. Psychiatry. 2003, 5, 70–73.
    42. Nelson, D. L.; Cox, M. M. Lehninger principles of biochemistry, Fifth Edition 2008, Figure 3-17c
    43. Schetters, H. Avidin and streptavidin in clinical diagnostics. Biomolecular Engineering. 1999, 16. 73-75.
    44. Chen, L.; Yang, S.; Jakoncic, J.; Zhang, J.; Huang, X. Y. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010, 464, 1062-1066.
    45. Cohen, J. H.; Kristal, A. R.; Stanford, J. L. Fruit and vegetable intakes and prostate cancer risk J. Natl. Cancer Inst.2000, 92, 61–68.
    46. Higdon, J. V.; Delage, B.; Williams, D. E.; Dashwood, R. H. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236.
    47. Minich, D. M.; Bland, J. S. A review of the clinical efficacy and safety of cruciferous vegetable phytochemicals. Nutr. Rev. 2007, 65, 259–267.
    48. Verhoeven, D. T.; Goldbohm, R. A.; Poppel, G.; Verhagen, H.; Brandt, P. A. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 733–748.
    49. Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Bcl-2 familymediated apoptotic effects of 3,3’-diindolylmethane (DIM) in human breast cancer cells. Biochem. Pharmacol. 2002, 63, 1085-1097.
    50. Howells, L. M.; Gallacher-Horley, B.; Houghton, C. E.; Manson, M. M.; Hudson, E. A. Indole-3-carbinol inhibits protein kinase B/Akt and induces apoptosis in the human breast tumor cell line MDAMB468 but not in the nontumorigenic HBL100 line. Mol. Cancer Ther. 2002, 1, 1161–1172.
    51. Katdare, M.; Osborne, M. P.; Telang, N. T. Inhibition of aberrant proliferation and induction of apoptosis in preneoplastic human mammary epithelial cells by natural phytochemicals. Oncol. Rep. 1998, 5, 311–315.
    52. Rahman, K. M.; Aranha, O.; Sarkar, F. H. Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in nontumorigenic breast epithelial cells. Nutr. Cancer 2003, 45, 101–112.
    53. Frydoonfar, H. R.; McGrath, D. R.; Spigelman, A. D. Inhibition of proliferation of a colon cancer cell line by indole-3-carbinol. Colorectal Dis. 2002, 4, 205-207.
    54. Hudson, E. A.; Howells, L. M.; Gallacher-Horley B.; Fox, L. H.; Gescher, A.; Manson, M. M. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line. BMC Cancer 2003, 3, 1-18.
    55. Zheng, Q.; Hirose, Y.; Yoshimi, N.; Murakami, A.; Koshimizu, K.; Ohigashi, H. et al. Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. J. Cancer Res. Clin. Oncol. 2002, 128, 539–546.
    56. Chinni, S. R.; Sarkar, F. H. Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin. Cancer Res. 2002, 8, 1228–1236.
    57. Frydoonfar, H. R.; McGrath, D. R.; Spigelman, A. D. The effect of indole-3-carbinol and sulforaphane on a prostate cancer cell line ANZ J. Surg.2003, 73, 154–156.
    58. Nachshon-Kedmi, M.; Yannai, S.; Haj, A.; Fares, F. A. Indole-3-carbinol and 3,3’-diindolylmethane induce apoptosis in human prostate cancer cells Food Chem. Toxicol. 2003, 41, 745–752.
    59. Leong, H.; Firestone, G. L.; Bjeldanes, L. F. Cytostatic effects of 3,3’-diindolylmethane in human endometrial cancer cells result from an estrogen receptor-mediated increase in transforming growth factor-alpha expression Carcinogenesis 2001, 22, 1809–1817.
    60. Weng, J. R.; Tsai, C. H.; Kulp, S. K.; Chen, C. S. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Letter. 2008, 262, 153–156
    61. Abdelrahim, M.; Newman, K.; Vanderlaag, K.; Samudio, I.; Safe, S. 3,3’-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2006, 27, 717–728.
    62. Bhuiyan, M. M.; Li, Y.; Banerjee, S.; Ahmed, F.; Wang, Z.; Ali, S. et al. Down-regulation of androgen receptor by 3,30-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive. Cancer Res. 2006, 66, 10064–10072.
    63. Garikapaty, V. P.; Ashok, B. T.; Tadi, K.; Mittelman, A.; Tiwari, R.K. 3,3’-Diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer. Biochem. Biophys. Res. Commun. 2006, 340, 718-725.
    64. Kong, D.; Li, Y.; Wang, Z.; Banerjee, S.; Sarkar, F. H. Inhibition of angiogenesis and invasion by 3,3’-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res. 2007, 67, 3310–3319.
    65. Li, Y.; Li, X.; Sarkar, F. H. Gene expression profiles of I3C and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J. Nutr. 2003, 133, 1011–1019.
    66. Li, Y.; Wang, Z.; Kong, D.; Murthy, S.; Dou, Q. P.; Sheng, S. et al. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3’-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J. Biol. Chem. 2007, 282, 21542–21550.
    67. Nachshon-Kedmi, M.; Yannai, S.; Fares, F. A. Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3’- diindolylmethane through the mitochondrial pathway. Br. J. Cancer 2004, 91, 1358-1363.
    68. Rahman, K. W.; Ali, S.; Aboukameel, A.; Sarkar, S. H.; Wang, Z.; Philip, P. A. et al. Inactivation of NF-{kappa}B by 3,3’-diindolylmethane contributes to increased apoptosis induced by chemotherapeutic agent in breast cancer cells Mol. Cancer Ther. 2007, 6, 2757-2765.
    69. Rahman, K. W.; Li, Y.; Wang, Z.; Sarkar, S. H.; Sarkar, F. H. Gene expression profiling revealed survivin as a target of 3,3’-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res. 2006, 66, 4952–4960.
    70. Herrmann, S.; Seidelin, M.; Bisgaard, H. C.; Vang, O. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis 2002, 23, 1861-1868
    71. Liu, H.; Wormke, M.; Safe, S. H.; Bjeldanes, L. F. Indolo[3,2-b]carbazole: a dietary-derived factor that exhibits both antiestrogenic and estrogenic activity. J. Natl. Cancer Inst. 1994, 86, 1758-1765.
    72. Herrmann, S.; Seidelin, M.; Bisgaard, H. C.; Vang, O. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis 2002, 23, 1861-1868.
    73. Aggarwal, B. B.; Ichikawa, H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 2005, 4, 1201–1215.
    74. Aggarwal, B. B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006, 71, 1397-1421.
    75. Kim, Y. S.; Milner, J. A. Targets for indole-3-carbinol in cancer prevention. J. Nutr. Biochem. 2005, 14, 65-73.
    76. Rogan, E.G. The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo 2006, 20, 221–228.
    77. Sarkar, F.H.; Li, Y. Indole-3-carbinol and prostate cancer. J. Nutr. 2004, 134, 3493S-3498S.
    78. Auborn, K. J.; Fan, S.; Rosen, E. M.; Goodwin, L.; Chandraskaren, A.; Williams, D. E. et al. Indole-3-carbinol is a negative regulator of estrogen. J. Nutr. 2003, 133, 2470S–2475S.
    79. Wang, T. T.; Milner, M. J.; Milner, J. A.; Kim,Y. S. Estrogen receptor alpha as a target for indole-3-carbinol. J. Nutr. Biochem. 2006. 17, 659-664.
    80. Parkin, D. R.; Malejka-Giganti, D. Differences in the hepatic P450-dependent metabolism of estrogen and tamoxifen in response to treatment of rats with 3,3’-diindolylmethane and its parent compound indole-3-carbinol Cancer Detect. Prev. 2004, 28, 72–79.
    81. Reed, G. A.; Arneson, D. W., Putnam, W. C.; Smith, H. J.; Gray, J. C.; Sullivan, D. K. et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,30-diindolylmethane. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 2477–2481.
    82. Hirashima, N.; Minatani, K.; Hattori, Y.; Ohwada, T.; Nakanishi, M. Anchoring Cationic Amphiphiles for Nucleotide Delivery Significance of DNA Release from Cationic Liposomes for Transfection. Biol. Pharm. Bull. 2007, 30, 1117-1122.
    83. 徐瑞靜, 國立中央大學碩士論文, 2008
    84. 江維恁, 國立中央大學碩士論文, 2008
    85. Clav´e, G.; Boutal, H.; Hoang, A.; Perraut, F.; Volland, H.; Renard, P. Y.; Romieu, A. A novel heterotrifunctional peptide-based cross-linking reagent for facile access to bioconjugates. Applications to peptide fluorescent labelling and immobilization. Org. Biomol. Chem. 2008, 6, 3065–3078

    下載圖示
    QR CODE