研究生: |
黃宗瀚 |
---|---|
論文名稱: |
兩性水膠的合成與對水泥砂漿試體水分散失的影響 |
指導教授: | 許貫中 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 高吸水性水膠 、兩性 、合成半交互穿插網狀結構 、自養護劑 |
英文關鍵詞: | superabsorbent hydrogel, zwitterionic, semi-interpenetrating network, self-curing agent |
論文種類: | 學術論文 |
相關次數: | 點閱:234 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成兩性離子水膠PAMD與半交互穿插網狀結構水膠PAsp/PAM。PAMD是由丙烯酸二甲胺乙脂與氯醋酸鈉合成出DAAE單體,接著由丙烯醯胺與DAAE以自由基聚合的方式反應得到。PAsp/PAM是由天冬氨酸與磷酸反應得PSI,經水解後得PAsp,再由丙烯醯胺與PAsp反應得到。探討改變交聯劑、起始劑、單體比例、水解時間後在對水膠吸水率的影響。並將合成之PAMD與PAsp/PAM加入水泥砂漿試體中探討添加水膠對試體保水率、濕度、抗壓強度的影響。
研究結果顯示PAMD最佳反應條件為DAAE : AAm = 1 : 1、APS = 0.8 mol%、MBA = 0.5 mol%,所製得之PAMD在純水中的吸水率可達396 g/g;在 0.1M NaCl、0.1M CaCl2的吸水率分別為42 g/g、31 g/g,最佳水解時間為6小時,可使PAMD吸水率增加至473 g/g,在0.1M NaCl的吸水率增加至81 g/g。PAsp/PAM最佳反應條件為PAsp : AM = 1 : 1、APS = 0.8 mol%、MBA = 0.5 mol%,所製得之PAsp/PAM在純水中的吸水率可達92 g/g,在0.1M NaCl、0.1M CaCl2的吸水率分別為40 g/g、26 g/g,最佳水解時間為6小時,可使PAsp/PAM吸水率增加至405 g/g,在0.1M NaCl的吸水率增加至85 g/g。
測試結果可知添加0.1%的PAMD及0.2%的PAsp/PAM於水泥砂漿試體為最佳添加量,試體的保水率、內部相對濕度濕度、抗壓強度皆有略微提升。
In this research, two kind of hydrogel, i.e., zwitterionic hydrogel PAMD and semi-interpenetrating polymer network hydrogel PAsp/PAM, have been synthesized. First, DAAE was prepared from 2-(Dimethylamino) ethyl acrylate and sodium chloroacetate. Secondly, PAMD was prepared from Acrylamide and DAAE by free-radical polymerization. PSI was prepared from aspartic acid and phosphoric acid, PAsp was prepared from PSI by hydrolysis, PAsp/PAM was prepared from Acrylamide and PAsp. The effect of MBA, APS, monomer ratio and hydrolysis time on the swelling ratio of hydrogel were investigated. The effect of hydrogel in cement paste on the water retention, humidity and compressive strength was studied.
The results indicate that the maximum water absorbency of PAMD(DAAE : AM = 1 : 1;APS = 0.8 mol%;MBA = 0.5 mol%)is 396 g/g in deionized water and 42 g/g, 31 g/g in 0.1M NaCl, 0.1M CaCl2 solution. The optimum hydrolyzed time is 6 hr, it can improve the water absorbency of PAMD 473 g/g in deionized water and 81 g/g in 0.1M NaCl solution. The maximum water absorbency of PAsp/PAM(PAsp : AM = 1 : 1;APS = 0.8 mol%;MBA = 0.5 mol%)is 92 g/g in deionized water and 40 g/g, 26 g/g in 0.1M NaCl, 0.1M CaCl2 solution. The optimum hydrolyzed time is 6 hr, it can improve the water absorbency of PAsp/PAM 405 g/g in deionized water and 85 g/g in 0.1M NaCl solution.
The test on mortar containing 0.1% PAMD and 0.2% PAsp/PAM showed that the water retention, relative humidity and compressive strength were slightly higher than the control.
1. 吳季懷,林建明,魏月琳,林松柏,“高吸水保水材料”,化學工業出版社,2005。
2. P. Lanthong, R. Nuisin, S. Kiatkamjornwong, “Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents”, Carbohydrate Polymers 66 (2006) 229–245.
3. Ji Zhang, Kun Yuan, Yun-Pu Wang, Sheng-Jiu Gu, Sheng-tang Zhang, “Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization”, Materials Letters 61 (2007) 316–320.
4. Tse-Ying Liu, San-Yuan Chen, Yi-Ling Lin, Dean-Mo Liu, “Synthesis and Characterization of Amphiphatic Carboxymethyl-hexanoyl Chitosan Hydrogel : Water-Retention Ability and Drug Encapsulation”, Langmuir 22 (2006) 9740-9745.
5. Chen Yu, Tan Hui-min, “Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer”, Carbohydrate Research 341 (2006) 887–896.
6. 李建穎,“高吸水與高吸油性樹脂”,化學工業出版社,2005。
7. Shimei Xu, Liqin Cao, Ronglan Wu, Jide Wang, “Salt and pH Responsive Property of a Starch-Based Amphoteric Superabsorbent Hydrogel with Quaternary Ammonium and Carboxyl Groups (II)”, Journal of Applied Polymer Science 101 (2006) 1995–1999.
8. Wen-Fu Lee, Chun-Hsiung Lee, “Poly(sulfobetaine)s and corresponding cationic polymers : 3, Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from styrene-maleic anhydride”, Polymer 38 (1997) 971-979.
9. Rong-Lan Wu, Shi-Mei Xu, Xiao-Juan Huang, Li-Qin Cao, Shun Feng, Ji-De Wang, “Swelling Behaviors of a New Zwitterionic N-carboxymethyl-N,
N-dimethyl-N-allylammonium/acrylic Acid Hydrogel”, Journal of Polymer Research 13 (2006) 33–37.
10. Ying Zhao, Juan Kang, Tianwei Tan, “Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid)”, Polymer 47 (2006) 7702-7710.
11. P.S. Keshava Murthy, Y. Murali Mohan, J. Sreeramulu, K. Mohana Raju, “Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation”, Reactive & Functional Polymers 66 (2006) 1482–1493.
12. Yian Zheng, Ping Li, Junping Zhang, Aiqin Wang, “Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites”, European Polymer Journal 43 (2007) 1691–1698.
13. A. Pourjavadi, A.M. Harzandi, H. Hosseinzadeh, “Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air”, European Polymer Journal 40 (2004) 1363–1370.
14. John P. Baker,Harvey W. Blanch, John M. Praysnitz, “swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory”, polymer 36 (1995)1061-1069.
15. S. Durmaz, O. Okay, “Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization”, Polymer 41 (2000) 3693–3704.
16. P. Lanthong, R. Nuisin, S. Kiatkamjornwong, “Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents”, Carbohydrate Polymers 66 (2006) 229–245.
17. Y. Murali Mohan, Kurt E. Geckeler, “Polyampholytic hydrogels: Poly(N-isopropylacrylamide)-based stimuli-responsive networks with poly(ethyleneimine)”, Reactive & Functional Polymers 67 (2007) 144–155.
18. A. Pourjavadi, M. Kurdtabar, “Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics”, European Polymer Journal 43 (2007) 877–889.
19. Harry R. Allcock, Archel M.A. Ambrosio, “Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogel”, Biomaterials 17 (1996) 2295-2302.
20. D. M. F. Prazeres, “Concentration of BSA using a superabsorbent polymer: process evaluation”, Journal of Biotechnology 39 (1995) 157-164.
21. L.H. Gan, G. Roshan Deen, X.J. Loh, Y.Y. Gan, “New stimuli-responsive copolymers of N-acryloyl-N0-alkyl piperazine and methyl methacrylate and their hydrogels”, Polymer 42 (2001) 65–69.
22. M.R. Lutfor, S. Sidik, W.M.Z. Wan Yunus, M.Z. Ab Rahman, A. Mansoor, H. Jelas, “Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch”, Carbohydrate Polymers 45 (2001) 95-100.
23. P.S. Keshava Murali Mohan, J. Sreeramulu, K. Mohana Ruju, “Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation”, Reactive & Functional Polymers 66 (2006) 1482-1493.
24. A. Pourjavadi, S. Barzegar, G. R. Mahdavinia, “MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogel”, Carbohydrate Polymers 66 (2006) 386-395.
25. S. Xu, R. Wu, X. Huang, L. Cao, J. Wang, “Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-codiallyldimethylammonium chloride)”, J. Appl. Polym. Sci. 102 (2006) 986-991.
26. J. Wei, S. Xu, R. Wu, J. Wang and Y. Gao, “Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride)”, J. Appl. Polym. Sci 103 (2007) 345-350
27. 楊思廉,工業化學概論,高立,1992。
28. N. Spiratos., M. Pagw. and N. P. Mailvaganam., Superplasticizers for comcrete : Fundamentals , technology and pratice, Handy Chemical Ltd (2006).
29. 黃兆龍,混凝土性質與行為,詹氏書局,1997。
30. H. J. Kuzel, Initial hydration reaction and mechanisms of delayed ettringite formation in portland cement, Cem. Concr. Composites 18 (1996), 195-203.
31. C. Jolicoeur. and M. A. Simard., Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998) 87-101.
32. H. Uchikawa., S. Uchida. and K. Ogawa., Influence of caso4.2h2o , caso4' 1/2h2o and caso4 on the initial hydration of clinker having different burning degree, Cem. Concr. Res. 14 (1984) 645-656.
33. S. Hanehara. and K. Yamada., Interaction between cement and chemical admixture from the point of cement hydration, adsorption behavior of admixture, and paste rheology, Cem. Concr. Res. 29 (1999) 1159-1165.
34. P. J. Andersen. and D. M. Roy., The effect of calcium sulfate adsorption of superplasticizer on a cement, Cem. Concr. Res. 16 (1992) 255-259.
35. 楊銘峰,改良磺化三具氰胺甲醛樹脂之合成與性質分析,國立台灣師範大學化學研究所碩士論文,2005。
36. S. Mindess. and F. J. Young., Concrete, Prentice-Hall Inc., (1981).
37. 杜方祥, “自養護混凝土”,國立交通大學土木工程系研究所碩士論文,2005。
38. R. K. Dhir, P. C. Hewlett, J. S. Lota, T. D. Dyer, “An investigation into the feasibility of formulating self-cure concrete”, Mater. Struct. 27 (1994) 606-615.
39. C. S. Viswanatha, “Self Curing Concrete Recent Developments”, Proceedings of ICACC-2008 7-9 (2008) 378-394.