簡易檢索 / 詳目顯示

研究生: 黃宗瀚
論文名稱: 兩性水膠的合成與對水泥砂漿試體水分散失的影響
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 高吸水性水膠兩性合成半交互穿插網狀結構自養護劑
英文關鍵詞: superabsorbent hydrogel, zwitterionic, semi-interpenetrating network, self-curing agent
論文種類: 學術論文
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成兩性離子水膠PAMD與半交互穿插網狀結構水膠PAsp/PAM。PAMD是由丙烯酸二甲胺乙脂與氯醋酸鈉合成出DAAE單體,接著由丙烯醯胺與DAAE以自由基聚合的方式反應得到。PAsp/PAM是由天冬氨酸與磷酸反應得PSI,經水解後得PAsp,再由丙烯醯胺與PAsp反應得到。探討改變交聯劑、起始劑、單體比例、水解時間後在對水膠吸水率的影響。並將合成之PAMD與PAsp/PAM加入水泥砂漿試體中探討添加水膠對試體保水率、濕度、抗壓強度的影響。
    研究結果顯示PAMD最佳反應條件為DAAE : AAm = 1 : 1、APS = 0.8 mol%、MBA = 0.5 mol%,所製得之PAMD在純水中的吸水率可達396 g/g;在 0.1M NaCl、0.1M CaCl2的吸水率分別為42 g/g、31 g/g,最佳水解時間為6小時,可使PAMD吸水率增加至473 g/g,在0.1M NaCl的吸水率增加至81 g/g。PAsp/PAM最佳反應條件為PAsp : AM = 1 : 1、APS = 0.8 mol%、MBA = 0.5 mol%,所製得之PAsp/PAM在純水中的吸水率可達92 g/g,在0.1M NaCl、0.1M CaCl2的吸水率分別為40 g/g、26 g/g,最佳水解時間為6小時,可使PAsp/PAM吸水率增加至405 g/g,在0.1M NaCl的吸水率增加至85 g/g。
    測試結果可知添加0.1%的PAMD及0.2%的PAsp/PAM於水泥砂漿試體為最佳添加量,試體的保水率、內部相對濕度濕度、抗壓強度皆有略微提升。

    In this research, two kind of hydrogel, i.e., zwitterionic hydrogel PAMD and semi-interpenetrating polymer network hydrogel PAsp/PAM, have been synthesized. First, DAAE was prepared from 2-(Dimethylamino) ethyl acrylate and sodium chloroacetate. Secondly, PAMD was prepared from Acrylamide and DAAE by free-radical polymerization. PSI was prepared from aspartic acid and phosphoric acid, PAsp was prepared from PSI by hydrolysis, PAsp/PAM was prepared from Acrylamide and PAsp. The effect of MBA, APS, monomer ratio and hydrolysis time on the swelling ratio of hydrogel were investigated. The effect of hydrogel in cement paste on the water retention, humidity and compressive strength was studied.
    The results indicate that the maximum water absorbency of PAMD(DAAE : AM = 1 : 1;APS = 0.8 mol%;MBA = 0.5 mol%)is 396 g/g in deionized water and 42 g/g, 31 g/g in 0.1M NaCl, 0.1M CaCl2 solution. The optimum hydrolyzed time is 6 hr, it can improve the water absorbency of PAMD 473 g/g in deionized water and 81 g/g in 0.1M NaCl solution. The maximum water absorbency of PAsp/PAM(PAsp : AM = 1 : 1;APS = 0.8 mol%;MBA = 0.5 mol%)is 92 g/g in deionized water and 40 g/g, 26 g/g in 0.1M NaCl, 0.1M CaCl2 solution. The optimum hydrolyzed time is 6 hr, it can improve the water absorbency of PAsp/PAM 405 g/g in deionized water and 85 g/g in 0.1M NaCl solution.
    The test on mortar containing 0.1% PAMD and 0.2% PAsp/PAM showed that the water retention, relative humidity and compressive strength were slightly higher than the control.

    目錄 摘要......................................................I Abstract................................................III 第一章 緒 論 1 第二章 文獻回顧 2 2-1 吸水性水膠簡介 2 2-1-1水膠的吸水理論 2 2-1-6水膠的保水能力 3 2-2 影響水膠吸水性能的因素 4 2-2-1 交聯劑的影響 4 2-2-2 官能基對水膠的影響 4 2-2-3 鹽水的影響 5 2-3 水膠的分類[6] 9 2-3-1 兩性離子高吸水性水膠 10 2-3-2 半交互穿插網狀結構水膠 11 2-4 水泥 12 2-4-1 卜特蘭水泥之組成[27] 12 2-4-2 水泥之水化 (Hydration)[31] 14 2-5 養護 20 2-5-1 適當養護的重要性 20 2-5-2 自我養護 20 2-5-3 自我養護的機制[38, 39] 20 第三章 實驗部分 22 3-1 實驗流程 22 3-2 實驗方法 22 3-3 實驗材料 25 3-4 實驗儀器 : 27 3-5 水膠之合成 28 3-5-1 DAAE之合成 28 3-5-2 水膠PAMD之合成 29 3-5-3 PAsp之合成 30 3-5-4 水膠PAsp/PAM之合成 31 3-6 吸水性樹脂結構鑑定及性質分析 32 3-6-1紅外線(IR)光譜分析 32 3-6-2 核磁共振(NMR)光譜分析 32 3-6-3 固含量測量 33 3-6-4 吸水率測量 33 3-6-5 水解實驗 33 3-6-6 水泥砂漿拌製 34 3-6-7 水泥砂漿試體水量損失及抗壓強度試驗 34 3-6-8 水泥砂漿試體內部相對濕度試驗 34 第四章 PAMD的性質分析與對砂漿性質的影響 36 4-1 共聚物之結構分析 36 4-1-1 DAAE之光譜分析 36 4-1-2 PAMD之光譜分析 38 4-2 交聯劑量對PAMD吸水率的影響 39 4-3 不同單體比例的PAMD的吸水率 43 4-3-1 單體比例對PAMD在純水中吸水率的影響 43 4-3-2 單體比例對PAMD在鹽水中吸水率的影響 44 4-4 起始劑量對PAMD吸水率的影響 47 4-5鹽水種類對PDAM吸水率的影響 50 4-6水解時間對PAMD吸水率的影響 53 4-7 PAMD對水泥砂漿試體的影響 55 4-7-1 PAMD在水泥砂漿試體中的保水性質 55 4-7-2 PAMD對水泥砂漿試體抗壓強度的影響 59 第五章 PAsp/PAM的性質分析與對砂漿性質的影響 61 5-1 共聚物之結構分析 61 5-2 單體比例對PAsp/PAM吸水率的影響 62 5-3水解時間對PAsp/PAM吸水率的影響 65 5-4 PAsp/PAM對水泥砂漿試體的影響 67 5-4-1 PAsp/PAM在水泥砂漿試體中的保水性質 67 5-4-2 PAsp/PAM對水泥砂漿試體抗壓強度的影響 70 第六章 結論 72 參考資料 74 圖目錄 圖 2-2-1 離子交聯示意圖............................................6 圖 2-3-1 兩性離子水膠結構.........................................11 圖 2-3-2 semi-IPN hydrogel結構示意圖..............................11 圖 2-4-1 卜特蘭水泥生成及水化示意圖...............................14 圖 2-4-2 水泥水化時間與放熱通量之關係圖...........................16 圖 2-4-3 水泥漿體水化示意圖.......................................18 圖 3-1-1 實驗流程圖...............................................24 圖 3-6-2 反應裝置圖...............................................29 圖 4-1-1 DAAE之IR光譜圖..........................................37 圖 4-1-2 DAAE之1H-NMR光譜圖......................................37 圖 4-1-3 PAMD之IR光譜圖..........................................38 圖 4-2-1 交聯劑劑量對PAMD吸水率的影響............................41 圖 4-2-2 交聯劑劑量對PAMD於鹽水中吸水率的影響....................42 圖 4-3-1 單體比例對PAMD在純水中吸水率的影響......................45 圖 4-3-2 單體比例對PAMD於鹽水中吸水率的影響......................46 圖 4-4-1 起始劑劑量對PAMD在純水中吸水率的影響....................48 圖 4-4-2 起始劑量對PAMD於鹽水中吸水率的影響......................49 圖 4-5-1 PAMD(C)於不同鹽水中的吸水率(1).........................52 圖 4-5-2 PAMD(C)於不同鹽水中的吸水率(2).........................52 圖 4-6-1 水解時間對PAMD(C)在純水中吸水率的影響..................54 圖 4-6-2 水解時間對PAMD(C)於鹽水中吸水率的影響..................54 圖 4-7-1 PAMD(C)對水泥砂漿試體水分散失的影響.....................57 圖 4-7-2 PAMD(C)在水泥砂漿試體的保水率...........................58 圖 4-7-3 PAMD(C)對水泥砂漿試體內部濕度的影響.....................58 圖 4-7-4 PAMD(C)對水泥砂漿試體抗壓強度的影響.....................60 圖 5-1-1 PAsp/PAM之IR光譜圖......................................61 圖 5-2-1 單體比例對PAsp/PAM在純水中吸水率的影響..................63 圖 5-2-2 單體比例對PAsp/PAM吸水率的影響..........................64 圖 5-3-1 水解時間對PAsp/PAM55在純水中吸水率的影響................66 圖 5-3-2 水解時間對PAsp/PAM55於鹽水中吸水率的影響................66 圖 5-4-1 PAsp/PAM55對砂漿試體水分散失的影響......................68 圖 5-4-2 PAsp/PAM55在砂漿試體的保水率............................69 圖 5-4-3 PAsp/PAM55對砂漿試體內部濕度的影響......................69 圖 5-4-4 PAsp/PAM55對砂漿試體抗壓強度的影響......................71 表目錄 表 2-2-1 水膠於鹽水中的吸水率......................................7 表 2-4-1 卜特蘭水泥之主要成份.....................................12 表 2-4-2 各種卜特蘭水泥的成份與性質...............................13 表 2-4-3 水泥水化方程式...........................................15 表 3-3-1 水泥之性質...............................................25 表 4-2-1 改變交聯劑劑量的PAMD合成條件............................41 表 4-3-1 改變PAMD單體比例的合成條件..............................45 表 4-4-1 改變起始劑劑量的PAMD之合成條件..........................48 表 4-7-1 添加PAMD(C)之水泥砂漿組成..............................57 表 5-2-1 改變單體比例的PAsp/PAM合成條件..........................63 表 5-4-1 添加PAsp/PAM55之水泥砂漿組成............................68

    1. 吳季懷,林建明,魏月琳,林松柏,“高吸水保水材料”,化學工業出版社,2005。

    2. P. Lanthong, R. Nuisin, S. Kiatkamjornwong, “Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents”, Carbohydrate Polymers 66 (2006) 229–245.

    3. Ji Zhang, Kun Yuan, Yun-Pu Wang, Sheng-Jiu Gu, Sheng-tang Zhang, “Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization”, Materials Letters 61 (2007) 316–320.

    4. Tse-Ying Liu, San-Yuan Chen, Yi-Ling Lin, Dean-Mo Liu, “Synthesis and Characterization of Amphiphatic Carboxymethyl-hexanoyl Chitosan Hydrogel : Water-Retention Ability and Drug Encapsulation”, Langmuir 22 (2006) 9740-9745.

    5. Chen Yu, Tan Hui-min, “Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer”, Carbohydrate Research 341 (2006) 887–896.

    6. 李建穎,“高吸水與高吸油性樹脂”,化學工業出版社,2005。

    7. Shimei Xu, Liqin Cao, Ronglan Wu, Jide Wang, “Salt and pH Responsive Property of a Starch-Based Amphoteric Superabsorbent Hydrogel with Quaternary Ammonium and Carboxyl Groups (II)”, Journal of Applied Polymer Science 101 (2006) 1995–1999.

    8. Wen-Fu Lee, Chun-Hsiung Lee, “Poly(sulfobetaine)s and corresponding cationic polymers : 3, Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from styrene-maleic anhydride”, Polymer 38 (1997) 971-979.

    9. Rong-Lan Wu, Shi-Mei Xu, Xiao-Juan Huang, Li-Qin Cao, Shun Feng, Ji-De Wang, “Swelling Behaviors of a New Zwitterionic N-carboxymethyl-N,
    N-dimethyl-N-allylammonium/acrylic Acid Hydrogel”, Journal of Polymer Research 13 (2006) 33–37.

    10. Ying Zhao, Juan Kang, Tianwei Tan, “Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid)”, Polymer 47 (2006) 7702-7710.

    11. P.S. Keshava Murthy, Y. Murali Mohan, J. Sreeramulu, K. Mohana Raju, “Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation”, Reactive & Functional Polymers 66 (2006) 1482–1493.

    12. Yian Zheng, Ping Li, Junping Zhang, Aiqin Wang, “Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites”, European Polymer Journal 43 (2007) 1691–1698.

    13. A. Pourjavadi, A.M. Harzandi, H. Hosseinzadeh, “Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air”, European Polymer Journal 40 (2004) 1363–1370.

    14. John P. Baker,Harvey W. Blanch, John M. Praysnitz, “swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory”, polymer 36 (1995)1061-1069.

    15. S. Durmaz, O. Okay, “Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization”, Polymer 41 (2000) 3693–3704.

    16. P. Lanthong, R. Nuisin, S. Kiatkamjornwong, “Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents”, Carbohydrate Polymers 66 (2006) 229–245.

    17. Y. Murali Mohan, Kurt E. Geckeler, “Polyampholytic hydrogels: Poly(N-isopropylacrylamide)-based stimuli-responsive networks with poly(ethyleneimine)”, Reactive & Functional Polymers 67 (2007) 144–155.

    18. A. Pourjavadi, M. Kurdtabar, “Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics”, European Polymer Journal 43 (2007) 877–889.

    19. Harry R. Allcock, Archel M.A. Ambrosio, “Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogel”, Biomaterials 17 (1996) 2295-2302.

    20. D. M. F. Prazeres, “Concentration of BSA using a superabsorbent polymer: process evaluation”, Journal of Biotechnology 39 (1995) 157-164.

    21. L.H. Gan, G. Roshan Deen, X.J. Loh, Y.Y. Gan, “New stimuli-responsive copolymers of N-acryloyl-N0-alkyl piperazine and methyl methacrylate and their hydrogels”, Polymer 42 (2001) 65–69.

    22. M.R. Lutfor, S. Sidik, W.M.Z. Wan Yunus, M.Z. Ab Rahman, A. Mansoor, H. Jelas, “Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch”, Carbohydrate Polymers 45 (2001) 95-100.

    23. P.S. Keshava Murali Mohan, J. Sreeramulu, K. Mohana Ruju, “Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation”, Reactive & Functional Polymers 66 (2006) 1482-1493.

    24. A. Pourjavadi, S. Barzegar, G. R. Mahdavinia, “MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogel”, Carbohydrate Polymers 66 (2006) 386-395.

    25. S. Xu, R. Wu, X. Huang, L. Cao, J. Wang, “Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-codiallyldimethylammonium chloride)”, J. Appl. Polym. Sci. 102 (2006) 986-991.

    26. J. Wei, S. Xu, R. Wu, J. Wang and Y. Gao, “Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride)”, J. Appl. Polym. Sci 103 (2007) 345-350

    27. 楊思廉,工業化學概論,高立,1992。

    28. N. Spiratos., M. Pagw. and N. P. Mailvaganam., Superplasticizers for comcrete : Fundamentals , technology and pratice, Handy Chemical Ltd (2006).

    29. 黃兆龍,混凝土性質與行為,詹氏書局,1997。

    30. H. J. Kuzel, Initial hydration reaction and mechanisms of delayed ettringite formation in portland cement, Cem. Concr. Composites 18 (1996), 195-203.

    31. C. Jolicoeur. and M. A. Simard., Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998) 87-101.

    32. H. Uchikawa., S. Uchida. and K. Ogawa., Influence of caso4.2h2o , caso4' 1/2h2o and caso4 on the initial hydration of clinker having different burning degree, Cem. Concr. Res. 14 (1984) 645-656.

    33. S. Hanehara. and K. Yamada., Interaction between cement and chemical admixture from the point of cement hydration, adsorption behavior of admixture, and paste rheology, Cem. Concr. Res. 29 (1999) 1159-1165.

    34. P. J. Andersen. and D. M. Roy., The effect of calcium sulfate adsorption of superplasticizer on a cement, Cem. Concr. Res. 16 (1992) 255-259.

    35. 楊銘峰,改良磺化三具氰胺甲醛樹脂之合成與性質分析,國立台灣師範大學化學研究所碩士論文,2005。

    36. S. Mindess. and F. J. Young., Concrete, Prentice-Hall Inc., (1981).

    37. 杜方祥, “自養護混凝土”,國立交通大學土木工程系研究所碩士論文,2005。

    38. R. K. Dhir, P. C. Hewlett, J. S. Lota, T. D. Dyer, “An investigation into the feasibility of formulating self-cure concrete”, Mater. Struct. 27 (1994) 606-615.

    39. C. S. Viswanatha, “Self Curing Concrete Recent Developments”, Proceedings of ICACC-2008 7-9 (2008) 378-394.

    無法下載圖示 本全文未授權公開
    QR CODE