簡易檢索 / 詳目顯示

研究生: 蔡孟光
TSAI, Meng-Kuang
論文名稱: 颱風數量年際變化之模擬與機制探討──WRF30公里解析度區域氣候模式
The Mechanisms Responsible for Interannual Variability of Typhoon Genesis ── WRF 30-km Regional Climate Model
指導教授: 鄒治華
Tsou, Chih-Hua
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 63
中文關鍵詞: 區域氣候模式颱風數量年際變化
論文種類: 學術論文
相關次數: 點閱:143下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在探討,西北太平洋地區颱風數量之年際變化。經由計算海表面溫度與颱風數量間之相關係數發現,西北太平洋颱風數量之年際變化與Niño3.4海溫相關不大。但與東北太平洋及北印度洋海溫之間,分別存在高度正相關與高度負相關。由NCEP觀測資料分析結果發現,颱風不活躍年季風槽及低層正渦度減弱,副熱帶高壓增強,在西北太平洋形成不利於颱風生成的環境。
    本研究進一步使用Weather Research and Forecasting (WRF)區域氣候模式,30公里水平解析度,設計NWP(105°E-180°,0°-40°N)、NP(105°E-120°W,5°S-45°N)及IOP(45°E-185°W,20°S-40°N)三組不同範圍之模擬實驗,針對2000-2010年夏、秋兩季進行區域氣候模擬,以討論中、東太平洋及印度洋海陸效應與青藏高原對於西北太平洋颱風數量年際變化之影響。三組模擬實驗皆能掌握季風槽與副熱帶高壓等大尺度環流之主要氣候特徵。NWP實驗與NP實驗模擬中,季風槽與低層正渦度模擬過強,颱風模擬數量較觀測偏多。雖然兩者在大尺度環流場與颱風數量之氣候模擬結果相似,NP在颱風數量年際變化的模擬較NWP佳,表示中、東太平洋海溫是影響颱風數量的重要因素之一。然而包含印度洋的IOP實驗,能更有效改善氣候場與颱風數量年際變化之模擬能力,在季風槽強度與颱風數量年際變化模擬結果與觀測較為接近。此結果顯示,印度洋海溫、海陸效應與青藏高原,對於颱風數量年際變化之影響較中、東太平洋更為關鍵。
    本研究進一步選取颱風數量最少、印度洋較暖的2010年,進行北印度洋增溫與北印度洋加倍增溫,五組成員之系集模擬實驗,探討北印度洋增溫影響颱風數量變化之相關機制。結果顯示,2010年當北印度洋較暖,但海陸溫差增大,故並非使季風槽減弱的主要因素。而可能透過Kelvin wave東傳,並在西北太平洋地區產生低層反氣旋式環流與負渦度距平,形成不利於颱風生成之大尺度環境。此外,2010年在西北太平洋海溫正距平的狀況下,北印度洋海溫的增暖所伴隨的東風距平,抵消氣候盛行之西風使風速減弱,將造成西北太平洋地區海洋提供大氣之潛熱通量減少,產生不利於颱風生成的條件。此應為印度洋增暖與西北太平洋颱風數量遙相關的重要因素之一。

    摘要.............................................I 致謝............................................II 目錄...........................................III 圖表目錄........................................IV 第一章 前言.................................................1 第二章 研究方法與使用資料.....................................5 2.1模式介紹...........................................5 2.2資料介紹..........................................6 2.2.1大尺度環境場資料......................................6 2.2.2颱風觀測資料..........................................6 2.2.3模式初始場及邊界資料..................................7 2.3模式參數設定.............................................7 2.4實驗設計................................................9 2.4.1第一部分..............................................9 2.4.2第二部分.............................................10 2.5模式颱風之判定...........................................11 第三章 颱風數量與海溫年際變化之相關性...........................13 第四章 大尺度環境與颱風模擬結果之分析與比較.....................16 第五章 環境場與颱風生成之年際變化模擬分析.....................22 5.1颱風活躍與不活躍個案年挑選.................................22 5.2颱風不活躍年之分析與模擬...................................23 5.3颱風數量年際變化之機制探討.................................28 第六章 結論與討論.......................................34 參考文獻...............................................39 附圖表..................................................45

    林建男,2011:季風槽與熱帶氣旋活動模擬於WRF30公里解析度區域氣候模式。國立台灣師範大學地球科學學系碩士論文。
    Bengtsson, L., M. Botzet, M. Esch, 2007: Tropical in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus A, 59: 396-416.
    Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus A, 57, 589-604.
    _____, S. J., A. H. Sobel, 2005: Western North Pacific Tropical Cyclone Intensity and ENSO. J. Climate, 18, 2996-3006.
    Chan, J. C. L., 2000: Tropical Cyclone Activity over the Western North Pacific Associated with El Nino and La Nina Events. J. Climate, 13, 2960-2972.
    _____, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western NorthPacific, Meterorl. Atmos. Phys., 89, 143-152.
    Chen, T.-C., and S.-P. Weng, N. Yamazaki, S. Kiehne, 1998: Interannual Variation in the Tropical Cyclone Formation over the Western North Pacific. Mon. Wea. Rev., 126, 1080-1090.
    _____, T.-C., and S.-Y. Wang, M.-C. Yen, 2006: Interannual Variation of the Tropical Cyclone Activity over the Western North Pacific. J. Climate, 19, 5709-5720.
    Cheung, K. K. W., 2004: Large-Scale Environmental Parameters Associated with Tropical Cyclone Formations in the Western North Pacific. J. Climate, 17, 466-484.
    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107.
    Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer, Quart. J. Roy. Meteor. Soc., 96, 715-721.
    Emanuel, K. A., 1988: The Maximum Intensity of Hurricanes. J. Atmos. Sci., 45, 1143-1155.
    Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 172–173.
    Gray, W. M., 1967: The mutual variation of wind, shear, and baroclinicity in the cumulus convective atmosphere. Mon. Wea. Rev., 95, 55-74
    _____, W. M., 1968: Global view of the orgin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
    _____, W. M., 1975: Tropical cyclone genesis. Dept. of Atmosphere Science Paper 234, Colorado State University, Fort Collins, CO, 121pp.
    _____, W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
    _____, W. M., 1998: The Formation of Tropical Cyclones. Meteorol. Atmos. Phys., 67, 37-69.
    Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), Article 1963.
    Hong, S.-Y., J. Dudhia, S.-H. Chen, 2004: A Revised Approach to Ice Microphysical Processes for Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev.,132, 103-120.
    _____, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme(WSM6), J. Korean Meteor. Soc., 42, 129-151.
    _____, S.-Y., Yign Noh, Jimy Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318-2341.
    Kanamitsu, M., W. Ebisuzaki, J Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorion, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Amer. Meteor. Soc., 83, 1631-1643.
    Knutson T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteror. Soc., 88, 1549-1565.
    Lee, C.-S., K. K. W. Cheung, J. S. N. Hui, R. L. Elsberry, 2008: Mesoscale Features Associated with Tropical Cyclone Formations in the Western North Pacific. Mon. Wea. Rev., 136, 2006-2022.
    Manabe, S., J. L. Holloway, Jr., and H. Srone, 1970: Tropical Ciculation in a Time-Integration of a Global Model of the Atmosphere. J. Atmos. Sci., 27, 580-612.
    Manganello,J. V., K. I. Hodges, J. L. Kinter, B. A. Cash, L. Marx, T. Jung, D. Achuthavarier, J. M. Adams, E. L. Altshuler, B. Huang, E. K. Jin, C. Stan, P. Towers, and N. Wedi, 2012: Tropical Cyclone Climatology in a 10-km Global Atmospheric GCM: Toward Weather-Resolving Climate Modeling. J. Climate, 25, 3867-3893.
    Matsuura, T., M. Yumoto, and S. Izuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105-117.
    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16, 663-16, 682.
    Paulson, C. A., 1970: The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteor., 9, 857-861.
    Smith, T. M., and R. W. Reynolds, 2004: Improved Extended Reconstruction of SST(1854-1997). J. Climate, 17, 2466-2477.
    Vitart F., J. L. Anderson, W. F. Stern, 1997: Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations. J. Climate, 10, 745-760.
    _____, F., D. Anderson, T. Stockdale, 2003: Seasonal Forecasting of Tropical Cyclone Landfall over Mozambique. J.climate, 16, 3932-3945.
    Walsh, K. J. E., M. Fiorino, C. W. Landsea, K. L. Mcinnes, 2007: Objectively Determined Resolution-Dependent Threshold Criteria for the Detection of Tropical Cyclones in Climate Models and Reanalyses. J. Climate, 20, 2307-2314.
    Wang, B., J. C. L. Chan, 2002: How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. J. Climate, 15, 1643-1658.
    Webster, P. J., 1987: The variable and interactive monsoon. In: J. S. Fein and P. Stephend(eds), Monsoons. Wiley, New York, 384pp.
    Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability, Quart. J. Roy. Meteor. Soc., 96, 67-90.
    Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, And T. Sampe, 2009: Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the Summer following El Nino. J. Climate, 22, 730-747.
    Young, J. A., 1987: Physics of Monsoon: The current view. In: Fein and Stephens(eds), Monsoon. John Willey & Sons, New York, 211-243.
    Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of tropical cyclone avtivity in the western north pacific. J. Metero. Soc. Japan, 79, 23-35.
    Zhan, R., Y. Wang, X. Lei, 2011a: Contributions of ENSO and East Indian Ocean SSTA to the Interannual Variability of Northwest Pacific Tropical Cyclone Frequency. J. Climate, 24, 509-521.
    _____, R., Y. Wang, C.-C. Wu, 2011b: Impact of SSTA in the East Indian Ocean on the Frequency of Northwest Pacific Tropical Cyclones: A Regional Atmospheric Model Study. J. Climate, 24, 6227-6242.

    下載圖示
    QR CODE