研究生: |
張林康 Cheung, Lam-Hong |
---|---|
論文名稱: |
DRP1表現變異和帕金森症:啟動子多型性和轉錄調控研究 DRP1 Expression Variation and Parkinson’s Disease: Studies of Promoter Polymorphism and Transcriptional Regulation |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 帕金森症 、DRP1 、啟動子核苷酸多型性 、轉錄調控 、粒線體分裂 、TFAP2A 、FOXA1 、CEBPB |
英文關鍵詞: | Parkinson’s disease, DRP1, Promoter single nucleotide polymorphism, Transcriptional regulation, Mitochondrial fission, TFAP2A, FOXA1, CEBPB |
DOI URL: | http://doi.org/10.6345/NTNU202000397 |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在帕金森症(PD)中,粒線體的代謝被破壞,而抑制電子傳遞鏈複合物I的神經毒素在人類和動物模型中會產生類似於帕金森氏症的症狀。遺傳性帕金森氏症的連鎖分析也顯示粒線體功能障礙與帕金森症的發病相關。粒線體在細胞中以動態管狀網絡存在,它通過裂變和融合不斷改變形狀,來適應局部的環境改變。Dynamin-related protein 1 (DRP1)是控制粒線體分裂的關鍵蛋白,它會經過轉譯後修飾和移位至粒線體外膜,來調節粒線體分裂。先前60個帕金森症患者週邊血單核細胞的研究顯示,DRP1表現水平顯著較53個正常對照組上升。DRP1啟動子的遺傳變異可能調節DRP1表達。通過直接定序,發現在DRP1啟動子區域中有-556 G/A (rs565216693)、-318 -/AAT、-315 A/T (rs201231372)和-311 A/T (rs11423175)等核苷酸多型性。接著藉PCR-RFLP技術,對533個帕金森症患者和544個正常對照組的病例對照研究,確認了-556 G/A多型性與帕金森症相關。-311 A/T與連鎖的-318 -/AAT及-315 A/T多型性與帕金森症相關性,DRP1啟動子直接定序檢測了各63個帕金森症患者和正常人的樣品,但因樣品數不夠大,差異未達顯著性。經由電腦模擬搜尋上述多型性鄰近區域序列,發現-556位點的變異會影響轉錄因子TFAP2A (Transcription factor AP-2 alpha)、CEBPB (CCAAT enhancer binding protein beta)的結合,而-318、-311位點的變異會影響轉錄因子FOXA1 (Forkhead box A1)的結合。TFAP2A、CEBPB、FOXA1在人的神經組織中皆有表現。-556 G/A可能因影響TFAP2A的結合而影響DRP1表現,-318 -/AAT、-311 A/T則可能因移動FOXA1結合位置改變染色質重建(Chromatin remodeling),來影響DRP1表現。過度表現FOXA1或CEBPB於SHSY-5Y細胞,可增強內生性DRP1表現。共轉染對照組DRP1-GFP報導質體和FOXA1/CEBPB到SHSY-5Y細胞,GFP的轉錄活性增加。本研究表明了-556 G/A基因型的人患上帕金森症的風險較大,且在SHSY-5Y細胞中,轉錄因子FOXA1或CEBPB會増加DRP1的轉錄活性。
In Parkinson’s disease (PD), mitochondrial metabolism is disrupted and neurotoxins that inhibit complex I of the electron transport chain produce PD-like symptoms in humans and animal models. Linkage analysis of hereditary PD has also suggested that mitochondrial dysfunction contributes to the pathogenesis of PD. Mitochondria in cells exist as a dynamic tubular network shaped continuously by fission and fusion events in response to local environmental changes. Dynamin-related protein 1 (DRP1), a key protein controlling fission, undergoes posttranslational modifications and translocation to the mitochondrial outer membrane to regulate mitochondrial fission. Previously DRP1 expression level was significantly increased in peripheral blood mononuclear cells from 60 PD patients compared with 53 normal controls. Genetic variations in the DRP1 promoter may modulate DRP1 expression. Through directing sequencing, polymorphisms -556 G/A (rs565216693), -318 -/AAT, -315 A/T (rs201231372), and -311 A/T (rs11423175) were found in the DRP1 promoter region. A case-control study (n=533 for PD and n=544 for controls) confirmed the association between -556 G/A and PD. The potential associations of -311 A/T and the linked -318 -/AAT, -315 A/T and PD were tested by direct sequencing. Due to small sample size (n=63 for both PD and normal controls), the difference was not significant. In silico searches of the regions flanking these variations revealed TFAP2A (transcription factor AP-2 alpha) and CEBPB (CCAAT enhancer binding protein beta) binding in -556 site and FOXA1 (forkhead box A1) binding in -318 and -311 sites. TFAP2A, CEBPB and FOXA1 are expressed in human nervous tissues. -556 G/A may sway TFAP2A binding and -318 -/AAT, -311 A/T may influence chromatin remodeling by shifting FOXA1 binding position to affect DRP1 expression. Overexpression of FOXA1 and CEBPB up-regulated DRP1 expression on SH-SY5Y cells. Co-transfection control DRP1-GFP reporter plasmid with FOXA1 or CEBPB could increase transcription activity of GFP. This study indicate that people with -556 G/A genotype have a higher risk of developing Parkinson’s disease. In SH-SY5Y cells FOXA1 or CEBPB could increase transcription activity of DRP1.
Anna, M.R., M. Wegrzynowicz, R. Rusconi, G. Deangeli, D.A. Di Monte, M.G. Spillantini, and A.H.V. Schapira. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice. Brain, 2017; 140(10): p. 2706-21.
Baek, S.H., S.J. Park, J.I. Jeong, S.H. Kim, J. Han, J.W. Kyung, S.H. Baik, Y. Choi, B.Y. Choi, J.S. Park, G. Bahn, J.H. Shin, D.S. Jo, J.Y. Lee, C.G. Jang, T.V. Arumugam, J. Kim, J.W. Han, J.Y. Koh, D.H. Cho, and D.G. Jo. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J Neurosci, 2017; 37(20): p. 5099-110.
Barsoum, M.J., Y. Hua, A.G. Akos, L. Géraldine, Y. Kushnareva, S. Gräber, K. Imre, W.D. Lee, J. Waggoner, C. Jiankun, A.D. White, B. Bossy, J.C. Martinou, R.J. Youle, S.A. Lipton, M.H. Ellisman, G.A. Perkins, and E. Bossy-Wetzel. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J, 2006; 25(16): p.3900-11.
Bertram, L. and R.E. Tanzi. The genetic epidemiology of neurodegenerative disease. J Clin Invest, 2005; 115(6): p. 1449-57.
Brookes A.J. The essence of SNPs. Gene, 1999; 234(2):177-86.
Buhlman, L., M. Damiano, G. Bertolin, R. Ferrando-Miguel, A. Lombès, A. Brice, and O. Corti. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochim Biophys Acta, 2014; 1843(9): p. 2012-26.
Burman, J.L., S. Yu, A.C. Poole, R.B. Decal, and L.Pallancka. Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants. Proc Natl Acad Sci USA, 2012; 109(26): p. 10438-443.
Cerveny, K.L., Y. Tamura, Z. Zhang, R.E. Jensen, and H. Sesaki. Regulation of mitochondrial fusion and division. Trends Cell Biol, 2007; 17(11): p. 563-9.
Chan, D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell, 2006; 125(7): p. 1241-52.
Chang, C.R. and C. Blackstone. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem, 2007; 282(30): p. 21583-7.
Chang, C.R. and C. Blackstone. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci, 2010; 1201: p. 34-9.
Chen, C.H., S.L. Howng, S.L. Hwang, C.K. Chou, C.H. Liao, and Y.R. Hong. Differential expression of four human dynamin-like protein variants in brain tumors. DNA Cell Biol, 2000; 19(3): 189-94.
Chiba, K., A. Trevor, and N. Jr. Castagnoli. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun, 1984; 120(2): p. 574-8.
Cirillo, L.A., F.R.Lin, I. Cuesta, D. Friedman, M. Jarnik, and K.S. Zaret. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell, 2002; 9(2): p.279-89.
Conley, S.C. and J.T. Kirchner. Medical and surgical treatment of Parkinson’s disease. Strategies to slow symptom progression and improve quality of life. Postgrad Med, 1999; 106(2): p. 41-4, 49, 52.
Corti, O., C. Hampe, F. Darios, P. Ibanez, M. Ruberg, and A. Brice. Parkinson’s disease: from causes to mechanisms. C R Biol, 2005; 328(2): p. 131-42.
D’Amato, R.J., Z.P. Lipman, and S.H. Snyder. Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science, 1986; 231(4741): p. 987-9.
Dauer, W. and S. Przedborski. Parkinson’s disease: mechanisms and models. Neuron, 2003; 39(6): p. 889-909.
Davis, A.A., K.M. Andruska, B.A. Benitez, B.A. Racette, J.S. Perlmutter, and C. Cruchaga. Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiol Aging, 2016; 37: 209.e1-209.e7.
Dawson, T.M. and V.L. Dawson. Molecular pathways of neurodegeneration in Parkinson’s disease. Science, 2003; 302(5646): p. 819-22.
Del Rey, N.L., A. Quiroga-Varela, E. Garbayo, I. Carballo-Carbajal, R. Fernández-Santiago, M.H.G. Monje, I. Trigo-Damas, M.J. Blanco-Prieto, and J. Blesa. Advances in Parkinson’s disease: 200 years later. Front Neuroanat, 2018; 12: p. 113.
Descombes ,P., M. Chojkier, S. Lichtsteiner, E. Falvey, and U. Schibler. LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev, 1990; 4(9): p.1541-51.
Descombes, P. and U. Schibler. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell, 1991; 67(3): p. 569-79.
Drechsel, D.A. and M. Patel. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med, 2008; 44(11): p. 1873-86.
Edwards, T.L., W.K. Scott, C. Almonte, A. Burt, E.H. Powell, G.W. Beecham, L. Wang, S. Züchner, I. Konidari, G. Wang, C. Singer, F. Nahab, B. Scott, J.M. Stajich, M. Pericak-Vance, J. Haines, J.M. Vance, and E.R. Martin. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet, 2010; 74(2): p.97-109.
Estaquier, J. and D. Arnoult. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ, 2007; 14(6): p. 1086-94.
Fan, Z., N. Li, Z. Xu, J. Wu, X. Fan, and Y. Xu. An interaction between MKL1, BRG1, and C/EBPβ mediates palmitate induced CRP transcription in hepatocytes. Biochim Biophys Acta Gene Regul Mech, 2019; 1862(9): 194412.
Filichia, E., B. Hoffer, X. Qi, and Y. Luo. Inhibition of Drp1 mitochondrial translocation provides neural protection in dopaminergic system in a Parkinson’s disease model induced by MPTP. Sci Rep, 2016; 6: p. 32656.
Foo, J.N., L.C. Tan, I.D. Irwan., W.L. Au, H.Q. Low, K.M. Prakash, A. Ahmad-Annuar, J. Bei, A.Y. Chan, C.M. Chen, Y.C. Chen, S.J. Chung, H. Deng, S.Y. Lim, V. Mok, H. Pang, Z. Pei, R. Peng, H.F. Shang, K. Song, A.H. Tan, Y.R. Wu, T. Aung, C.Y. Cheng, F.T. Chew, S.H. Chew, S.A. Chong, R.P. Ebstein, J. Lee, S.M. Saw, A. Seow, M. Subramaniam, E.S. Tai, E.N. Vithana, T.Y. Wong, K.K. Heng, W.Y. Meah, C.C. Khor, H. Liu, F. Zhang, J. Liu, and E.K. Tan. Hum Mol Genet, 2017; 26(1): p. 226-32.
Frank, S., B. Gaume, E.S. Bergmann-Leitner, W.W. Leitner, E.G. Robert, F. Catez, C.L. Smith, and R.J. Youle. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell, 2001; 1(4): p. 515-25.
Giasson, B.I., I.V. Murray, J.Q. Trojanowski, and V.M. Lee. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem, 2001; 276(4): p. 2380-6.
Gibb, W.R. and A.J. Lees. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 1991; 54(5): p. 388-96.
Greenamyre, J.T., R. Betarbet, and T.B. Sherer. The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord, 2003; 9 Suppl 2: p. S59-64.
Hirai, H., A. Yokota, A. Tamura, A. Sato, and T. Maekawa. Non-steady-state hematopoiesis regulated by the C/EBPβ transcription factor. Cancer Sci, 2015; 106(7): p. 797-802.
Ho, D.H., A.R. Je, H. Lee, I. Son, H.S. Kweon, H.G. Kim, and W. Seol. LRRK2 kinase activity induces mitochondrial fission in microglia via Drp1 and modulates neuroinflammation. Exp Neurobiol, 2018; 27(3): p. 171-80.
Hoehn, M.M. and M.D. Yahr. Parkinsonism: onset, progression and mortality. Neurology, 1967; 17(5): p. 427-42.
Howng, S.L., W.D. Sy, T.S. Cheng, A.S. Lieu, C. Wang, W.S. Tzou, C.L. Cho, and Y.R. Hong. Genomic organization, alternative splicing, and promoter analysis of human dynamin-like protein gene. Biochem Biophys Res Commun, 2004; 314(3): p. 766-72.
Hwang, R.D., L. Wiemerslage, C.J. LaBreck, M. Khan, K. Kannan, X. Wang, X. Zhu, D. Lee and Y.W. Fridell. The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson’s disease. Neurobiol Dis, 2014; 69:p.180-91.
Imoto, M., I. Tachibana, and R. Urrutia. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J Cell Sci, 1998; 111(Pt 10): 1341-9.
Jensen, R.E. and A.E. Johnson. Opening the door to mitochondrial protein import. Nat Struct Biol, 2001; 8(12): p. 1008-10.
Josée, L., G. Deblois, C. Lefebvre, A.R. Bataille, F. Robert, and V. Giguère. Location analysis of estrogen receptor α target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA, 2005; 102(33): p. 11651-6.
Kashatus, J.A., A. Nascimento, L.J. Myers, A. Sher, F.L. Byrne, K.L. Hoehn, C.M. Counter, and D.F. Kashatus. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell, 2015; 57(3): p. 537-51.
Kowenz-Leutz, E. and A. Leutz. A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. Mol Cell, 1999; 4(5): p.735-43.
Klein, C. and W. Ana. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med, 2012; 2(1): a008888.
Knott, A.B., G. Perkins, R. Schwarzenbacher, and E. Bossy-Wetzel. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci, 2008; 9(7): p. 505-18.
Lai, J.C., M.J. Minski, A.W. Chan, T.K. Leung, and L. Lim. Manganese mineral interactions in brain. Neurotoxicology, 1999; 20(2-3): p. 433-44.
Langston, J.W. and P.A. Jr. Ballard. Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med, 1983; 309(5): 310.
Lee, J.H., J.Y. Sung, E.K. Choi, H.K. Yoon, B.R. Kang, E.K. Hong, B.K. Park, Y.N. Kim, S.B. Rho, and K. Yoon. C/EBPβ is a transcriptional regulator of Wee1 at the G₂/M phase of the cell cycle. Cell, 2019; 8(2): pii: E145.
Lee, L.C., C.M. Chen, F.L. Chen, P.Y. Lin, Y.C. Hsiao, P.R. Wang, M.T. Su, H.M. Hsieh-Li, J.C. Hwang, C.H. Wu, G.C. Lee, S. Singh, Y. Lin, S.Y. Hsieh, G.J. Lee-Chen, and J.Y. Lin. Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis. Clin Chim Acta, 2009; 400(1-2): p. 56-62.
Li, Q., C. Luo, C.V. Löhr, and R.H. Dashwood. Activator protein-2α functions as a master regulator of multiple transcription factors in the mouse liver. Hepatol Res, 2011; 41(8): p. 776-83.
Lupien, M., J. Eeckhoute, C.A. Meyer, Q. Wang, Y. Zhang, W. Li, J.S. Carroll, X.S. Liu, and M. Brown. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell, 2008; 132(6): 958-70.
Mammucari, C. and R. Rizzuto. Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev, 2010; 131(7-8): p. 536-43.
Mears, J.A., L.L. Lackner, S. Fang, E. Ingerman, J. Nunnari, and J.E. Hinshaw. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol, 2011; 18(1): p.20-6.
Montgomery, E.B. Jr. Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology, 1995; 97(1-3): p. 3-9.
Mootha, V.K., J. Bunkenborg, J.V. Olsen, M. Hjerrild, J.R. Wisniewski, E. Stahl, M.S. Bolouri, H.N. Ray, S. Sihag, M. Kamal, N. Patterson, E.S. Lander, and M. Mann. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell, 2003; 115(5): p. 629-40.
Mounsey, R.B. and P. Teismann. Mitochondrial dysfunction in Parkinson’s disease: pathogenesis and neuroprotection. Parkinson’s Disease, 2011; 617472.
Nistico, R., B. Mehdawy, S. Piccirilli, and N. Mercuri. Paraquat- and rotenone-induced models of Parkinson’s disease. Int J Immunopathol Pharmacol, 2011; 24(2): p. 313-22.
Obeso, J.A., M.C. Rodríguez-Oroz, B. Benitez-Temino, F.J. Blesa, J. Guridi, C. Marin, and M. Rodriguez. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord, 2008; 23 Suppl 3: p. S548-59.
Ordonez, D.G., M.K. Lee, and M.B. Feany. α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron, 2018; 97(1): p. 108-24.
Otera, H., N. Ishihara, and K. Mihara. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta, 2013; 1833(5): p. 1256-68.
Parkinson, J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci, 2002; 14(2): p. 223-36; discussion 222.
Polymeropoulos, M.H., C. Lavedan, E. Leroy, S.E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E.S. Stenroos, S. Chandrasekharappa, A. Athanassiadou, T. Papapetropoulos, W.G. Johnson, A.M. Lazzarini, R.C. Duvoisin, G. Di Iorio, L.I. Golbe, and R.L. Nussbaum. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 1997; 276(5321): p. 2045-7.
Ping, Z., W. Xiaomu, X. Xufang, C. Wenfeng, S. Liang, and W. Tao. GAPDH rs1136666 SNP indicates a high risk of Parkinson’s disease. Neurosci Lett, 2018; 685: 55-62.
Priyadarshi, A., S.A. Khuder, E.A. Schaub, and S. Shrivastava. A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology, 2000; 21(4): p. 435-40.
Qi, X., M.H. Disatnik, N. Shen, R.A. Sobel, and D. Mochly-Rosen. Aberrant mitochondrial fission in neurons induced by protein kinase Cδ under oxidative stress conditions in vivo. Mol Biol Cell, 2011; 22(2): p. 256-65.
Ramirez, A., A. Heimbach, J. Gründemann, B. Stiller, D. Hampshire, L.P. Cid, I. Goebel, A.F. Mubaidin, A.L. Wriekat, J. Roeper, A. Al-Din, AM. Hillmer, M. Karsak, B. Liss, C.G. Woods, M.I. Behrens, and C. Kubisch. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet, 2006; 38(10): p. 1184-91.
Sai, Y., Z. Zou, K. Peng, and Z. Dong. The Parkinson’s disease-related genes act in mitochondrial homeostasis. Neurosci Biobehav Rev, 2012; 36(9): p. 2034-43.
Satake, W., Y. Nakabayashi, I. Mizuta, Y. Hirota, C. Ito, M. Kubo, T. Kawaguchi, T. Tsunoda, M. Watanabe, A. Takeda, H. Tomiyama, K. Nakashima, K. Hasegawa, F. Obata, T. Yoshikawa, H. Kawakami, S. Sakoda, M. Yamamoto, N. Hattori, M. Murata, Y. Nakamura, and T. Toda. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet, 2009; 41(12): p. 1303-7.
Sawada, M., H. Sawada, and T. Nagatsu. Effects of aging on neuroprotective and neurotoxic properties of microglia in neurodegenerative diseases. Neurodegener Dis, 2008; 5(3-4): p. 254-6.
Schmidt, M., L. Huber, A. Majdazari, G. Schütz, T. Williams, and H. Rohrer. The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol, 2011; 355(1): p.89-100.
Sidransky, E., M.A. Nalls, J.O. Aasly, J. Aharon-Peretz, G. Annesi, E.R. Barbosa, A. Bar-Shira , D. Berg, J. Bras, A. Brice, C.M. Chen, L.N. Clark, C. Condroyer, E.V. De Marco, A. Dürr, M.J. Eblan, S. Fahn, M.J. Farrer, H.C. Fung , Z. Gan-Or, T. Gasser, R. Gershoni-Baruch, N. Giladi, A. Griffith, T. Gurevich, C. Januario, P. Kropp, A.E. Lang, G.J. Lee-Chen, S. Lesage, K. Marder, I.F. Mata, A. Mirelman, J. Mitsui, I. Mizuta, G. Nicoletti, C. Oliveira, R. Ottman, A. Orr-Urtreger, L.V. Pereira, A. Quattrone, E. Rogaeva, A. Rolfs, H. Rosenbaum, R. Rozenberg, A. Samii, T. Samaddar, C. Schulte, M. Sharma, A. Singleton, M. Spitz, E.K. Tan, N. Tayebi, T. Toda, A.R. Troiano, S. Tsuji, M. Wittstock, T.G. Wolfsberg, Y.R. Wu, C.P. Zabetian, Y. Zhao, and S.G. Ziegler. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med, 2009; 361(17): p. 1651-61.
Simone B., F.N. Soria, R.Z. Fan, E. Bezard, and T. Kim. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease. Sci Rep, 2017; 7: p.7495.
Singleterry, J., A. Sreedhar, and Y. Zhao. Components of cancer metabolism and therapeutic interventions. Mitochondrion, 2014; 50-5.
Smirnova, E., D.L. Shurland, S.N. Ryazantsev, and A.M. van der Bliek. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol, 1998; 143(2): p.351-8.
Spillantini, M.G., R.A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A, 1998; 95(11): p. 6469-73.
Skipper, L., Y. Li, C. Bonnard, R. Pavanni, Y. Yih, E. Chua, W.K. Sung, L. Tan, M.C. Wong, E.K. Tan, and J. Liu. Comprehensive evaluation of common genetic variation within LRRK2 reveals evidence for association with sporadic Parkinson’s disease. Hum Mol Genet, 2005; 14(23): p. 3549-56.
Su, Y.C and X. Qi. Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet, 2013; 22(22): p. 4545-61.
Subramaniam, S.R. and M.F. Chesselet. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol, 2013; 106-107: p. 17-32.
Taguchi, N., N. Ishihara, A. Jofuku, T. Oka, and K. Mihara. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem, 2007; 282(15): p. 11521-9.
Tanner, C.M., R. Ottman, S.M. Goldman, J. Ellenberg, P. Chan, R. Mayeux, and J.W. Langston. Parkinson disease in twins: an etiologic study. JAMA, 1999; 281(4): p. 341-6.
Van Maele-Fabry, G., P. Hoet, F. Vilain, and D. Lison. Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ Int, 2012; 46: p. 30-43.
Vignal, A., D. Milan, M. SanCristobal, and A. Eggen. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol, 2002; 34(3):275-305.
Vinson, C.R., P.B. Sigler, and S.L. McKnight. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989; 246(4932): p.911-6.
Wang, N.D., M.J. Finegold, A. Bradley, C.N. Ou, S.V. Abdelsayed, M.D. Wilde, L.R. Taylor, D.R. Wilson, and G.J. Darlington. Impaired energy homeostasis in C/EBP alpha knockout mice. Science, 1995; 269(5227): p. 1108-12.
Wang, W.Z., X.L. Wang, H. Fujioka, C. Hoppel, A.L. Whone, M. Caldwell, P.J. Cullen, J. Liu, and X. Zhu. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med, 2016; 22(1):p. 54-63.
Wang, X., M.H. Yan, H. Fujioka, J. Liu, A. Wilson-Delfosse, S.G. Chen, G. Perry, G. Casadesus, and X. Zhu. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet, 2012; 21(9): p. 1931-44.
Yu, T., B.S. Jhun, and Y. Yoon. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal, 2011; 14(3): p. 425-37.
Zahnow, C.A., P. Younes, R. Laucirica, and J.M. Rosen. Overexpression of C/EBPbeta-LIP, a naturally occurring, dominant-negative transcription factor, in human breast cancer. J Natl Cancer Inst, 1997; 89(24): p. 1887-91.
Zhang, J., S. Hagopian-Donaldson, G. Serbedzija, J. Elsemore, D. Plehn-Dujowich, A.P. McMahon, R.A. Flavell, and T. Williams. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature, 1996; 381(6579): p. 238-41.
Zhao, F., W. Wang, C. Wang, S.L. Siedlak, H. Fujioka, B. Tang, and X. Zhu. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis, 2017; 1863(6): p. 1359-1370.