研究生: |
謝宜靜 Hsieh, I-Ching |
---|---|
論文名稱: |
設計具有抗聚集性的人類降鈣素變異體 Design of aggregation-resistant variants of human calcitonin |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
口試委員: |
王勝仕
Wang, Sheng-Shih 李以仁 Lee, I-Ren |
口試日期: | 2021/07/21 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 人類降鈣素 、類澱粉蛋白纖維 、聚集 、胜肽設計 、變異體 |
英文關鍵詞: | human calcitonin, amyloid fibril, aggregation, peptide design, variants |
DOI URL: | http://doi.org/10.6345/NTNU202100795 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胜肽的不可逆聚集極大地限制了其做為藥物的生物利用度和治療活性,因此有效抑制胜肽聚集是一個重要的挑戰。人類降鈣素(Human calcitonin, hCT)是一種由32個胺基酸組成的的胜肽激素,經由甲狀腺中的濾泡旁細胞(C-cell)所分泌,並且hCT在生物體中具有調節血鈣水平並維持骨骼型態的生理功能,因此適合用於治療骨骼相關等疾病,如:骨質疏鬆症和佩吉特氏症。然而,hCT具有形成類澱粉蛋白纖維的高聚集傾向,這可能導致原始功能降低而阻礙其藥物潛力。目前臨床治療中,鮭魚降鈣素(Salmon calcitonine, sCT)因為較高的生物活性和極低的聚集傾向,而代替hCT成為廣泛使用的胜肽藥物,但可惜的是sCT與hCT的低序列同源性,造成患者服藥後有嚴重的副作用和免疫反應發生,因此本研究的目標是設計一種與hCT保持高序列相似性的變異體。先前已證明在hCT的特定胺基酸位點上進行修改就足以有效抑制hCT聚集,所以我們試圖找尋出調節胜肽聚集的關鍵位置和胺基酸,使hCT能以最微小的序列變化設計出具有低聚集傾向但不損失生物活性的理想策略。在這項研究中,我們使用預測軟體發現Tyr12位置在抑制hCT聚集中起關鍵作用,從而提出了三種人類降鈣素變異體(Y12E、Y12P和Y12R),並且透過多種實驗觀察聚集特性,包括ThT螢光動力學、TEM、SDS-PAGE和DLS,顯示Y12E表現出較好的抗聚集能力,以及指出三種變異體與磷脂膜相互作用和TFE誘導劑下結構幾乎不受太大影響。我們還進一步的測定細胞內被激活的cAMP來檢測這些變異體是否能與其受體結合,卻意外發現,Tyr12的胺基酸側鏈結構可能是與受體結合的重要部位。本研究證實了Tyr12突變成Glu、Pro雖然能顯著改善其類澱粉蛋白纖維形成,可是卻也嚴重影響其發揮正常的生理功能,需要更謹慎地探討Tyr12在序列中的意義。
Irreversible aggregation greatly limits bioavailability and therapeutic activity of peptide-based drugs, so it is an important challenge to effectively inhibit peptide aggregation. Human calcitonin (hCT) is a 32-residue peptide hormone that is secreted by the parafollicular cells (C-cell) in the thyroid. hCT can regulate blood calcium levels and maintain bone formation, hence it can be used as a treatment of metabolic bone diseases, such as osteoporosis and Paget's disease. However, hCT has a relatively high propensity to form amyloid fibrils which may reduce its original function and limit pharmaceutical potential. In clinical treatment, salmon calcitonin (sCT) is the replacement of hCT as a widely therapeutic agent due to its higher biological activity and extremely low tendency to aggregate. Unfortunately, sCT has the low sequence homology with hCT that could induce severe immunoreaction in patients taking. Therefore, the goal of this study is to design a variant that maintains a high degree of sequence similarity with hCT. In previous studies, it has been demonstrated that modifying the specific residues of hCT is sufficient to effectively inhibit hCT aggregation, so we tried to find the key residue that regulate the aggregation of hCT. This minor sequence modification of hCT may be an ideal strategy to the rational design of low aggregation propensity yet without loss of bioactivity. In this work, we used amyloid propensity prediction software and found that the Tyr12 position plays a key role in regulating hCT aggregation. Thus, we proposed three human calcitonin variants (Y12E, Y12P, Y12R) and examined the aggregation characteristics by using multiple techniques including ThT fluorescence, TEM, SDS-PAGE and DLS. It was found that Y12E has better anti-aggregation ability than Y12P, but Y12R formed short fibers. It was unexpectedly discovered that the interaction of the three variants with the phospholipid membrane and the TFE-induced substructure are almost unaffected due to mutation. We further confirmed whether the variants can interact with receptors through cAMP assay. We surprisedly found that side chain of Tyr12 was a key feature upon receptor binding. This study indicated that the mutation of Tyr12 to Glu and Pro can significantly improve hCT fibril formation, but it also seriously affects its normal physiological functions. We need to more carefully explore the significance of Tyr12 in hCT sequence.
1. Siddiqi, M.K., et al., Amyloid Oligomers, Protofibrils and Fibrils. Subcell Biochem, 2019. 93: p. 471-503.
2. Sipe, J.D., et al., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 2016. 23(4): p. 209-213.
3. Chiti, F. and C.M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem, 2006. 75: p. 333-66.
4. Goedert, M., NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science, 2015. 349(6248): p. 1255555.
5. Lane, C.A., J. Hardy, and J.M. Schott, Alzheimer's disease. Eur J Neurol, 2018. 25(1): p. 59-70.
6. Antony, P.M., et al., The hallmarks of Parkinson's disease. FEBS J, 2013. 280(23): p. 5981-93.
7. Westermark, P., A. Andersson, and G.T. Westermark, Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev, 2011. 91(3): p. 795-826.
8. Dobson, C.M., Protein folding and misfolding. Nature, 2003. 426(6968): p. 884-90.
9. Tyedmers, J., A. Mogk, and B. Bukau, Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol, 2010. 11(11): p. 777-88.
10. 胡凱崴, 探討蛋白質醣化對阿茲海默症中乙型類澱粉蛋白(Aβ)聚集的影響, in 化學系. 2019, 國立臺灣師範大學: 台北市. p. 93.
11. Maji, S.K., et al., Structure-activity relationship of amyloid fibrils. FEBS Lett, 2009. 583(16): p. 2610-7.
12. Nelson, R., et al., Structure of the cross-beta spine of amyloid-like fibrils. Nature, 2005. 435(7043): p. 773-8.
13. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochim Biophys Acta, 2005. 1751(2): p. 119-39.
14. Micsonai, A., et al., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci U S A, 2015. 112(24): p. E3095-103.
15. Au, D.F., et al., Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-beta fibrils. J Biol Chem, 2019. 294(15): p. 5840-5853.
16. Tuttle, M.D., et al., Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol, 2016. 23(5): p. 409-15.
17. Zhou, R., Replica exchange molecular dynamics method for protein folding simulation. Methods Mol Biol, 2007. 350: p. 205-23.
18. Itoh-Watanabe, H., et al., Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Phys Chem Chem Phys, 2013. 15(23): p. 8890-901.
19. Xue, W.F., S.W. Homans, and S.E. Radford, Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A, 2008. 105(26): p. 8926-31.
20. Pryor, N.E., M.A. Moss, and C.N. Hestekin, Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int J Mol Sci, 2012. 13(3): p. 3038-72.
21. Biancalana, M. and S. Koide, Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta, 2010. 1804(7): p. 1405-12.
22. Kumar, S. and J. Walter, Phosphorylation of amyloid beta (Aβ) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY), 2011. 3(8): p. 803-12.
23. Naot, D. and J. Cornish, The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone, 2008. 43(5): p. 813-8.
24. Pondel, M., Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol, 2000. 81(6): p. 405-22.
25. Austin, L.A. and H. Heath, 3rd, Calcitonin: physiology and pathophysiology. N Engl J Med, 1981. 304(5): p. 269-78.
26. Brewer, H.B., Jr. and R. Ronan, Amino acid sequence of bovine thyrocalcitonin. Proc Natl Acad Sci U S A, 1969. 63(3): p. 940-7.
27. Peel, N., Bone remodelling and disorders of bone metabolism. Surgery (Oxford), 2009. 27(2): p. 70-74.
28. Ji, M.X. and Q. Yu, Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med, 2015. 1(1): p. 9-13.
29. Siris, E.S., Paget's disease of bone. J Bone Miner Res, 1998. 13(7): p. 1061-5.
30. Davey, R.A. and D.M. Findlay, Calcitonin: physiology or fantasy? J Bone Miner Res, 2013. 28(5): p. 973-9.
31. Nicholson, G.C., et al., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest, 1986. 78(2): p. 355-60.
32. Stenbeck, G., Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol, 2002. 13(4): p. 285-92.
33. Martin, T.J., et al., Calcitonin receptors in a cloned human breast cancer cell line (MCF 7). Biochem Biophys Res Commun, 1980. 96(1): p. 150-6.
34. Wohlwend, A., et al., Calcitonin and calcitonin gene-related peptide interact with the same receptor in cultured LLC-PK1 kidney cells. Biochem Biophys Res Commun, 1985. 131(2): p. 537-42.
35. Masi, L. and M.L. Brandi, Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab, 2007. 4(2): p. 117-22.
36. Sexton, P.M., et al., Localization and characterization of renal calcitonin receptors by in vitro autoradiography. Kidney Int, 1987. 32(6): p. 862-8.
37. Gruber, H.E., et al., Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism, 1984. 33(4): p. 295-303.
38. Peacock, M., Calcium metabolism in health and disease. Clin J Am Soc Nephrol, 2010. 5 Suppl 1: p. S23-30.
39. Arvinte, T., A. Cudd, and A.F. Drake, The structure and mechanism of formation of human calcitonin fibrils. J Biol Chem, 1993. 268(9): p. 6415-22.
40. Chesnut, C.H., 3rd, et al., A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med, 2000. 109(4): p. 267-76.
41. Cudd, A., et al., Enhanced potency of human calcitonin when fibrillation is avoided. J Pharm Sci, 1995. 84(6): p. 717-9.
42. Kanaori, K. and A.Y. Nosaka, Study of human calcitonin fibrillation by proton nuclear magnetic resonance spectroscopy. Biochemistry, 1995. 34(38): p. 12138-43.
43. Reches, M., Y. Porat, and E. Gazit, Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem, 2002. 277(38): p. 35475-80.
44. Epand, R.F., R.C. Orlowski, and R.M. Epand, The biological potency of a series of analogues of human calcitonin correlates with their interactions with phospholipids. Biopolymers, 2004. 76(3): p. 258-65.
45. Uda, K., et al., Stable human calcitonin analogues with high potency on bone together with reduced anorectic and renal actions. Biol Pharm Bull, 1999. 22(3): p. 244-52.
46. Maier, R., B. Riniker, and W. Rittel, Analogues of human calcitonin. I. Influence of modifications in amino acid positions 29 and 31 on hypocalcaemic activity in the rat. FEBS Lett, 1974. 48(1): p. 68-71.
47. Epand, R.M., R.F. Epand, and R.C. Orlowski, Study of a series of analogs of salmon calcitonin in which alanine replaces leucine. Eur J Biochem, 1990. 188(3): p. 633-5.
48. Epand, R.M., J.K. Seyler, and R.C. Orlowski, The hydrophobic moment of the amphipathic helix of salmon calcitonin and biological potency. Eur J Biochem, 1986. 159(1): p. 125-7.
49. Fernandez-Escamilla, A.M., et al., Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol, 2004. 22(10): p. 1302-6.
50. Thompson, M.J., et al., The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A, 2006. 103(11): p. 4074-8.
51. Maurer-Stroh, S., et al., Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods, 2010. 7(3): p. 237-42.
52. Iconomidou, V.A., et al., Identification of a novel 'aggregation-prone'/'amyloidogenic determinant' peptide in the sequence of the highly amyloidogenic human calcitonin. FEBS Lett, 2013. 587(6): p. 569-74.
53. Fowler, S.B., et al., Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proc Natl Acad Sci U S A, 2005. 102(29): p. 10105-10.
54. Andreotti, G., et al., Converting the highly amyloidogenic human calcitonin into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic analogue. J Biol Chem, 2011. 286(4): p. 2707-18.
55. Chen, Y.T., et al., Inhibiting Human Calcitonin Fibril Formation with Its Most Relevant Aggregation-Resistant Analog. J Phys Chem B, 2019. 123(48): p. 10171-10180.
56. Ye, H., H. Li, and Z. Gao, Y12 nitration of human calcitonin (hCT): A promising strategy to produce non-aggregation bioactive hCT. Nitric Oxide, 2020. 104-105: p. 11-19.
57. Rousseau, F., J. Schymkowitz, and L. Serrano, Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol, 2006. 16(1): p. 118-26.
58. 陳昱傑, 具多巴胺與五胜肽 DFNKF 修飾的中孔洞氧化矽奈米粒子對人類降鈣素聚集之影響, in 化學系. 2021, 國立臺灣師範大學: 台北市. p. 85.
59. Mochizuki, M., et al., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Org Lett, 2015. 17(9): p. 2202-5.
60. Ban, T., et al., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J Biol Chem, 2003. 278(19): p. 16462-5.
61. Srivastava, A., et al., Identifying the bond responsible for the fluorescence modulation in an amyloid fibril sensor. Chemistry, 2010. 16(30): p. 9257-63.
62. LeVine, H., 3rd, Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1-40) amyloid fibrils. Arch Biochem Biophys, 1997. 342(2): p. 306-16.
63. Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry / Jeremy M. Berg, John L. Tymoczko, Lubert Stryer ; with Gregory J. Gatto, Jr. 7th ed., International edition ed. 2012, New York: W.H. Freeman.
64. 陳怡婷, 人類降鈣素雙突變體提升抗纖維化能力及做為胜肽藥物之潛能, in 化學系. 2019, 國立臺灣師範大學: 台北市. p. 99.
65. Hempelmann, E. RBC Membrane Proteins SDS-PAGE gel. Available from: https://commons.wikimedia.org/w/index.php?curid=8673266.
66. Malishev, R., S. Kolusheva, and R. Jelinek, Vesicle-Based Assays to Study Membrane Interactions of Amyloid Peptides. Methods Mol Biol, 2019. 1873: p. 39-51.
67. Parrish, J.R., Jr. and E.R. Blout, Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol. Biopolymers, 1971. 10(9): p. 1491-512.
68. Luo, P. and R.L. Baldwin, Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry, 1997. 36(27): p. 8413-21.
69. Wang, S.S., T.A. Good, and D.L. Rymer, The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. Int J Biochem Cell Biol, 2005. 37(8): p. 1656-69.
70. Shtainfeld, A., T. Sheynis, and R. Jelinek, Specific mutations alter fibrillation kinetics, fiber morphologies, and membrane interactions of pentapeptides derived from human calcitonin. Biochemistry, 2010. 49(25): p. 5299-307.
71. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc, 2006. 1(6): p. 2876-90.
72. Zeta-potential & Particle size Analyzer ELSZ-2000 series. Available from: https://www.otsukael.com/product/detail/productid/1/category1id/2/category2id/1/category3id/29.
73. Liddle, G.W. and J.G. Hardman, Cyclic adenosine monophosphate as a mediator of hormone action. N Engl J Med, 1971. 285(10): p. 560-6.
74. Findlay, D.M., et al., Calcitonin and 1,25-dihydroxyvitamin D3 receptors in human breast cancer cell lines. Cancer Res, 1980. 40(12): p. 4764-7.
75. Suda, T., N. Takahashi, and T.J. Martin, Modulation of osteoclast differentiation. Endocr Rev, 1992. 13(1): p. 66-80.
76. Kanzawa, M., et al., Involvement of osteoprotegerin/osteoclastogenesis inhibitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. Eur J Endocrinol, 2000. 142(6): p. 661-4.
77. Guo, C., et al., Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Sci Rep, 2015. 5: p. 13556.
78. Ye, H., et al., Heme prevents highly amyloidogenic human calcitonin (hCT) aggregation: A potential new strategy for the clinical reuse of hCT. J Inorg Biochem, 2019. 196: p. 110686.
79. Gade Malmos, K., et al., ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid, 2017. 24(1): p. 1-16.
80. Andreotti, G., et al., Structural determinants of salmon calcitonin bioactivity: the role of the Leu-based amphipathic alpha-helix. J Biol Chem, 2006. 281(34): p. 24193-203.
81. Kawashima, H., et al., A dimer model of human calcitonin13-32 forms an α-helical structure and robustly aggregates in 50% aqueous 2,2,2-trifluoroethanol solution. J Pept Sci, 2016. 22(7): p. 480-4.
82. Amodeo, P., et al., Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. J Biomol NMR, 1999. 13(2): p. 161-74.
83. Micsonai, A., et al., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res, 2018. 46(W1): p. W315-W322.
84. Hui, S.W., et al., Effects of lipid structure on peptide-lipid interactions. Complexes of salmon calcitonin with phosphatidylglycerol and with phosphatidic acid. Biochim Biophys Acta, 1984. 772(3): p. 264-72.