簡易檢索 / 詳目顯示

研究生: 沈湘屏
Shen, Hsiang-Ping
論文名稱: 高中生建構平面向量線性組合概念之個案研究
指導教授: 左台益
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 301
中文關鍵詞: 平面向量APOS理論認知建構
英文關鍵詞: plane vectors, APOS Theory, cognitive construction
DOI URL: https://doi.org/10.6345/NTNU202201944
論文種類: 學術論文
相關次數: 點閱:157下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討學生學習平面向量過程的特徵與困難,以及平面向量基本概念之認知結構,研究中選取會考成績達基礎以上乃至精熟之學生為樣研究對象,針對六位未學過的高一學生進行學習活動、訪談及後測。筆者依APOS理論發展平面向量基本概念之起源分解圖,包含平面向量基本意義、平面向量基本運算(加法、減法、係數積)以及平面向量線性組合;接著再依起源分解圖發展研究工具,設計對應之學習活動單與後測評量卷。資料收集分為兩階段,筆者此時同時扮演教學者與訪談者的角色,第一階段為平面向量基本概念之學習活動,過程中筆者不斷與個案學生互動,必要時會輔以提示、引導介入;第二階段為後測,測驗學生學習後具備之概念,在學生完成測驗後再訪談學生。
    研究結果顯示部分學生因幾何圖形性質不熟悉影響其將向量幾何表徵轉為坐標表徵;幾乎所有學生都無法自行由代數符號關係轉換坐標或幾何表徵求出係數積向量;學生傾向以物理情境或平移向量幫助自己建構與內化向量加法過程,而有些學生幾何加法過程有些反覆;學生在減法幾何中,難以反轉平行四邊形法加法,傾向以「加法與反向量過程合成」處理幾何減法;給定任意幾何圖形,學生很難將圖中向量去膠囊化,改寫成其它兩不平行向量的線性組合。
    筆者建議教學者設計活動讓學生主動連結向量坐標與幾何表徵;利用物理上位移、合力的類比幫助學生思考,加速學生內化向量幾何加減法的過程與意義;並幫助學生建立穩健的基本運算概念,建立各個基本運算間基模的連結;也幫學生統整複習其它幾何圖形的關係與性質;除了幾何直觀證明,也可利用二元一次聯立方程式說明兩不平行向量線性組合的存在性。

    This research was trying to understand the cognitive construction of senior high school students in linear combinations of plane vectors. The author researched about the characteristics and obstacles of students while learning, and the cognitive constructions about elementary concepts of plane vectors after learning. Six freshmen participated the learning activities, joined the tests, and were interviewed. The author developed genetic decomposition diagrams (GD) of the elementary concepts in plane vectors according to APOS Theory, including basic meaning, elementary operations (vectors addition, subtraction and scalar multiplication were included) and linear combination. After then, research tools were developed. Learning activities sheet and post-test sheet were designed according to GD. The data were collected by 2 phases: the first phase were learning activities, in which phase the author interacted with the interviewed student at times; and the second phase were post-test, in which phase student was interviewed after finishing the test.
    The research result showed that some students had difficulties in transferring geometric representation into coordinate one. Almost all students couldn’t transferred coordinate and algebraic representation into geometric one and figured out scalar vectors by themselves. Students used physical situation and translated vectors to help interiorize the Process of addition. Some students had difficulties in reversing the Process of addition such that they intended to coordinate the Process of addition and inverse vectors while dealing with the subtraction problems. Students had difficulties in de-encapsulating a vector Object into the linear combination of other non-parallel vectors.
    The author suggested that teacher design activities to let students have opportunities in connecting coordinate and geometric representations. The analogy of “displacement” and “force” may help students’ learning, accelerate the interiorization of addition and subtraction Process. With intact concepts in elementary operation can help students develop the connection between the schema of those concepts. Teacher should also help student review the relation and properties of other geometric graphs. Except geometric intuition discussion, teacher can help students realize the existence of linear combinations between two non-parallel vectors with the help of linear equation with two unknowns.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 4 第三節 重要名詞界定 5 第貳章 文獻探討 7 第一節 數學概念與概念建構 7 第二節 APOS理論與起源分解 15 第參章 研究方法 23 第一節 研究對象 23 第二節 研究設計 24 第三節 研究工具 28 第四節 研究流程 32 第五節 資料收集與分析方式 33 第六節 研究限制 35 第肆章 資料分析與研究發現 37 第一節 高中生在發展平面向量線性組合的過程中所呈現的認知特徵與學習困難 37 第二節 高中生在平面向量線性組合的認知結構 101 第五章 結論與建議 115 第一節 研究結論 115 第二節 實務與研究的建議 120 參考文獻 122 附錄 127 附錄1 個案學生S1的訪談內容摘錄 127 附錄2 個案學生S2的訪談內容摘錄 138 附錄3 個案學生S3的訪談內容摘錄 153 附錄4 個案學生S4的訪談內容摘錄 165 附錄5 個案學生S5的訪談內容摘錄 182 附錄6 個案學生S6的訪談內容摘錄 215 附錄7 觀察系統登錄表 (形成性評量) 232 附錄8 觀察系統登錄表 (總結性評量) 234 附錄9 學習時間整理表 235 附錄10 學習介入評分表 254 附錄11 起源分解圖 260 附錄12 活動學習單 266 附錄13 GGB檔案彙總表曁GGB畫面 284 附錄14 後測評量 294 附錄15 學習活動雙向細目表 301

    一、中文部分
    陳澤民(譯)(2000)。數學學習心理學(原作者:Richard R. Skemp)。臺北市:九章。(原作出版年:1987)
    蔡敏玲、陳正乾(譯)(1997)。社會中的心智: 高層次心理過程的發展(原作者: Vygotsky, LS)。臺北市:心理。(原作出版年:1978)。
    王湘君(1978)。向量的「內積」與應用。數學傳播, 3(1),120-122
    王憲鈿(譯)(1981)。發生認識論原理(原作者: J. Piaget)。北京市:商務印書館。
    張春興(1996)。教育心理學:三化取向的理論與實踐(pp. 32-58、376-410)。臺北市:臺灣東華。
    單維彰(2010)。從四元數到空間向量(上)。科學月刊 41(8),562-573
    單維彰(2010)。「向量」從何而來。科學月刊,41(5),332-333
    單維彰(2013)。向量在高中數學課程的份量。科學月刊,44(3), 172-173
    鄭毓信(1998)。 建構主義與數學教育。數學傳播,22(3),36-49
    詹勳國、李震甌、莊蕙元、戴政吉、侯美玲(譯)(2004)。數學的學習與教學: 六歲到十八歲(原作者:Marilyn Nickson)。臺北市:心理。(原作出版年:2000)。
    洪壽陽(2015)。台南地區高中學生在「平面向量」單元之錯誤類型分析(碩士論文)。
    黃楷文(2012)。教具融入高中平面向量教學之成效研究(碩士論文)。
    洪志瑋(2013)。高中生關於向量內積的概念心像之探究(碩士論文)。
    李永貞(2009)。高二學生在向量概念學習上的主要錯誤類型及其補救教學之研究(碩士論文)。
    莊景文(2013)。桃園地區高二學生空間向量單元之錯誤類型分析(碩士論文)。
    陳俊廷(2002)。高中學生空間向量學習困難的診斷測驗工具發展研究(碩士論文)。
    林進發(2001)。桃園地區高中學生向量內積之運算及應用錯誤類型之研究(碩士論文)。
    林福來、陳順宇、陳創義、徐正梅、許清土、林信安 (2011)。普通高級中學數學第三冊(pp.143-218)。台南市:南一書局。
    許志農、許琬青、陳清風、謝銘峰、南婷婷 (2011)。普通高級中學數學第三冊(pp.140-215)。台北縣:龍騰文化。
    游森棚、林延輯、柯建彰、洪士薰、洪育祥、張宮明(2011)。普通高級中學數學第三冊(pp.150-229)。台南市:翰林出版公司。

    二、英文部分
    Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2013). APOS theory: A framework for research and curriculum development in mathematics education. New York: Springer.
    Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. In Research in Collegiate mathematics education II. CBMS issues in mathematics education (Vol. 6), pp. 1-32. Providence, RI: American Mathematical Society.
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of learning and motivation, 2, 89-195.
    Bruner, J. S. (1964). The course of cognitive growth. American psychologist, 19(1), 1.
    Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. The Journal of Mathematical Behavior, 15(2), 167-192.
    Goldin, G. A. (2002). Representation in mathematical learning and problem solving. Handbook of international research in mathematics education, 197-218. New York : Routledge.
    Kaput, J. J. (1987). Representation Systems and Mathematics. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier : Lawrence Erlbaum, Hillsdale, NJ. pp. 19-26.
    Kilpatrick, J. (1987). What constructivism might be in mathematics education. In Proceedings of the eleventh conference of the international group for the psychology of mathematics education (PME 11). Volume 1(pp. 3-27). University of Montreal.
    Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. Problems of representation in the teaching and learning of mathematics, (pp. 33-40). Netherlands: Kluwer Academic.
    National Council of Teachers of Mathematics (Ed.). (2000). Principles and standards for school mathematics (Vol. 1). National Council of Teachers of Mathematics.
    Parraguez, M., & Oktac¸, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and its Applications, 432, 2112-2124.
    Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational studies in mathematics, 22(1), 1-36.
    Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151-169.
    Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (1999). What is the object of the encapsulation of a process?. The Journal of Mathematical Behavior, 18(2), 223-241.
    Trigueros, M., & Martı´nez-Planell, R. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73, 3-19.
    Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305.

    下載圖示
    QR CODE