研究生: |
廖宏銘 Liao, Hung-Min |
---|---|
論文名稱: |
橢圓曲線的二次扭變 Quadratic Twists of Elliptic Curves |
指導教授: |
紀文鎮
Chi, Wen-Chen 陳其誠 Tan, Ki-Seng |
學位類別: |
博士 Doctor |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 橢圓曲線 、二次扭變 |
英文關鍵詞: | Elliptic Curve, Quadratic Twist, 2-Selmer Group |
論文種類: | 學術論文 |
相關次數: | 點閱:224 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於橢圓曲線的二次扭變,可以追溯到古希臘的一個數論問題,現在我們稱為congruent number problem。而在Ono的論文中提及一個猜想,給定一個橢圓曲線 E 會有無窮多個質數p,使得其對p的二次扭變的秩為零,同時也會有無窮多個質數q,使得其對q的二次扭變的秩為正。在這篇論文中,我們證明了,對於某類橢圓曲線,這個猜想是正確的,並且給出一個方法找出滿足其條件的質數。
Let E be an elliptic curve defined over Q, and for each square-free rational integer d, let E_d denote the the quadratic twist of E by d (in brief, the d-twist). The
question concerning the rank rk(Ed(Q)) of the Mordell-Weil group E_d(Q) (the rank of E_d over Q) can be traced back to the ancient Greek congruent number problem for which the involved elliptic curve is nowadays called the congruent curve defined by
y^2 = x^3-x:
A square free integer d is a congruent number if and only if the d-twist of the congruent curve has positive rank over Q. There is a conjecture given in the Ono's paper. If E/Q is an elliptic curve, then there are infinitely many primes p for which E_p has rank 0 over Q, and there are infinitely many primes l for which E_l has positive
rank over Q.
The main aim of this thesis is to verify this conjecture for a large family of elliptic curves by giving an algorithm to find the suitable primes. For the technical
reason, we need to assume that the subgroup of 2-torsion points, E[2], is contained in E(Q), or equivalently, the defining equation of E can be written as
y2 = x(x - a)(x - b); a, b \in Z; 0 < a < b; and (a,b) square free:
Most of the previous works compute the rank of E_d over Q by computing Sel_2(E_d/Q). Our approach is slightly different, we consider L =Q(\sqrt{d}) and determine the rank of E_d over Q by computing the rank of E over L
and then using the equality:
rk(E(L)) = rk(E(Q)) + rk(E_d(Q)):
The advantage of doing so is that the Selmer group Sel_2(E/L) becomes controllable if the extension L/Q satisfies certain condition that can be easily formulated via local data.
Bibliography
[Bir69] B. J. Birch, Diophantine analysis and modular functions, in Algebraic Geometry (Internat.
Colloq., Tata Inst. Fund. Res., Bombay, 1968), 35-42, Oxford Univ. Press, London, 1969.
[Bir70] -, Elliptic curves and modular functions, In Symposia Mathematica, Vol. IV (INDAM,
Rome, 1968/69), 27-32 Academic Press, London, 1970.
[CaE56] H. Cartan, S. Eilenberg Homological Algebra, Princenton University Press, Princeton,
New Jersey, 1956.
[CLT05] W.-C. Chi, K.F. Lai and K.-S. Tan, Integral points on elliptic curves, Pac. J. Math. 222,
No. 2 (2005), 237-252
[CKRS] J.B. Conrey, J.P. Keating, M.O. Rubinstein, N.C. Snaith On the frequency of vanishing
of quadratic twists of modular L-functions, Number theory for the millennium, I (Urbana, IL,
2000), 301V315, A K Peters, Natick, MA, 2002.
[Elk94] N. Elkies, Heegner point computations, Algorithmic Number Theory (ANTS-1), Lect. Notes
in Comp. Sci. 877, Springer-Verlag, Berlin, 1994, 122-133.
[ElkWeb] -, http://www.math.harvard.edu/ elkies/compnt.html
[Gol79] D. Goldfeld, Conjectures on elliptic curves over quadratic elds, Lecture Notes in Math.
751, Springer-Verlag, 1979, 108-119.
[GouM91] F. Gouv^ ea, B. Mazur, The square-free sieve and the rank of elliptic curves J. Amer.
Math. Soc. 4, 1991, no.1, 1-23.
[Hea94] D.R. Heath-Brown, The size of Selmer groups for the congruent number problem. II Invent.
Math. 118, 1994, no.2, 331-370.
[Hee52] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56,1952, 227-253.
[Mil86] J.S. Milne, Arithmetic Duality Theorems, Academic Press, New York, 1986. , 1952, 227-
253.
[M-M94 ] Mai, L. and Murty, R., A note on quadratic twists of an elliptic curve, CRM Proceedings
and Lecture Notes, 4, 1994, 121-124.
[Mon90] Paul Monsky. Mock heegner points and congruent numbers Mathematische Zeitschrift,
1990, 204:45-67.
[Kob84] Neal Koblitz, Introduction to elliptic curves and modular forms, Graudate Texts in Math.
97, Springer, New York, 1984.
[Ono97] K. Ono, Twists of Elliptic Curves, Compositio Mathematica 106, 1997, 349-360.
[OS98] K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-functions Invent. Math.
134, 1998, 651-660.
[Rei75] Reiner, I. Maximal Orders, Academic Press, New York, 1975.
[RubS01] K. Rubin, A. Silverberg, Rank frequencies for quadratic twists of elliptic curves Exper.
Math. 10, 2001, no.4, 559-569.
[RubS02] -, Ranks of elliptic curves Bull. Amer. Math Soc. 39. 2002, 455-474.
[Ser79] J.-P. Serre, Local Fields, Spronger-Verlag, New York, 1979.
[Sht72] S. Shatz, Pronite groups, Arithmetic, and Geometry, Annals of Math. Studies 67, Prince-
ton University Press, 1972.
[Sil86] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer,
New York, 1986.
[Sil94] -, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Math. 151,
Springer, New York, 1994.
[SteT95] C.L. Stewart, J. Top, On ranks of twists of elliptic curves and power-free values of binary
forms, J. Amer. Math. Soc. 8, 1967, no.4, 943-973.
[Tat57/58] J. Tate, WC-groups over p-adic elds, Seminaire Bourbaki, Expose 156, 13pp.
[Tat62] J. Tate, Duality theorems in Galois cohomology over number elds, Proc. Intern. Congress
Math. Stockholm, 234-241.
[Tat67] J. Tate, Global class eld theory, in Algebraic Number Theory, J.W.S. Cassels and A.
Frohlich, eds., Acdemic Press, 1967, 162-203. Proc. Intern. Congress Math. Stockholm, 234-
241.
[Tun83] J.B. Tunnell. A classical diophantine problem and modular forms of weight 3=2 Inventiones
Mathematicae, 1983, 72:323-334.