研究生: |
張榮堃 Chang, Rong-Kun |
---|---|
論文名稱: |
應用於K/Ka頻段積體電路之靜電放電防護設計 On-Chip ESD Protection Design for K/Ka-Band Applications |
指導教授: |
林群祐
Lin, Chun-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 靜電放電耐受度 、電感 、矽控整流器 |
英文關鍵詞: | electrostatic discharge, inductor, silicon-controlled rectifier |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計之電感嵌入矽控整流器的靜電放電防護元件可在共振的頻率之下使電路的小訊號增益損耗降低,只要選擇正確的電感感值便可以達成目標。此外,矽控整流器能在最小的面積下提供最高的靜電放電耐受度,達成較佳的電路靜電放電防護能力。
為了驗證靜電放電防護元件在實際電路上的效能,本論文同時設計了一個低雜訊放大器電路,並且裝備本論文所提出之電感嵌入矽控整流器的靜電放電防護元件,在實驗結果比較中,本論文所提出的設計並不會降低電路的小訊號增益。
本論文中的所有電路皆使用0.18um CMOS製程實現。透過實驗分析比較結果,本論文所提出的設計確實能夠達成良好的靜電放電防護能力,使電路能夠承受4kV的人體放電模式之靜電放電測試,證明電路能夠有效地被該元件保護。
An inductor-assisted silicon-controlled rectifier (LASCR) electrostatic discharge (ESD) protection device was designed in this study. The signal loss under the resonant frequency can be reduced by selecting the appropriate inductor in the LASCR. Furthermore, silicon-controlled rectifier has good ESD robustness and small layout area, and let circuit achieve good ESD protection ability.
In order to verify the protection ability of ESD protection device on the radio frequency (RF) circuit, a low-noise amplifier (LNA) circuit has been fabricated in this study, which equipped with LASCR ESD protection device. In the experimental results, the proposed design did not degrade the small-signal gain of the LNA circuit.
All devices and circuits in this study are fabricated in 0.18um CMOS process. Through analysis and comparison of the experimental results, the proposed design can achieve a good ESD protection ability. In the experimental results, the proposed design can bear 4kV HBM test without degrade the small-signal gain of the circuit. This proves that the circuit can be effectively protected by the LASCR.
[1] B. Razavi, “CMOS technology characterization for analog and RF design,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 268-276, Mar. 1999.
[2] S. Voldman, ESD Physics and Devices, John Wiley & Sons, 2005.
[3] J. Li, K. Chatty, R. Gauthier, R. Mishra, and C. Russ, “Technology scaling of advanced bulk CMOS on-chip ESD protection down to the 32nm node,” in Proc. EOS/ESD Symp., 2009, pp. 69-75.
[4] Standard Test Method for Electrostatic Discharge (ESD) Sensitivity Testing: Human Body Model (HBM)—Component Level, Standard ANSI/ESDA/JEDEC JS-001-2010, 2010.
[5] M.-D. Ker, J.-J. Peng, and H.-C. Jiang, “ESD test methods on integrated circuits: an overview,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, 2001, pp. 1011-1014.
[6] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999.
[7] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Juge, and P. Mortini, “Investigation on different ESD protection strategies devoted to 3.3 V RF applications (2 GHz) in a 0.18μm CMOS process,” in Proc. EOS/ESD Symp., 2000, pp. 251-259.
[8] S. Voldman, ESD: RF Technology and Circuits, John Wiley & Sons, 2006.
[9] Y. Li, J. Liou, J. Vinson, and L. Zhang, “Investigation of LOCOS- and polysilicon-bound diodes for robust electrostatic discharge (ESD) applications,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 814-819, Apr. 2010.
[10] K. Bhatia, N. Jack, and E. Rosenbaum, “Layout optimization of ESD protection diodes for high-frequency I/Os,” IEEE Trans. Device Mater. Rel., vol. 9, no. 3, pp. 465-475, Sep. 2009.
[11] S. Galal and B. Razavi, “Broadband ESD protection circuits in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003.
[12] D. Linten, S. Thijs, J. Borremans, M. Dehan, D. Tremouilles, M. Scholz, M. Natarajan, P. Wambacq, and G. Groeseneken, “T-diodes - a novel plug-and-play wideband RF circuit ESD protection methodology,” in Proc. EOS/ESD Symp., 2007, pp. 242-249.
[13] C.-Y. Lin and M.-L. Fan, “Design of ESD protection diodes with embedded SCR for differential LNA in a 65-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 11, pp. 2723-2732, Nov. 2014.
[14] M. Tsai, S. Hsu, F. Hsueh, C. Jou, and T. Yeh, “A 17.5-26 GHz low-noise amplifier with over 8 kV ESD protection in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 9, pp. 483-485, Sep. 2012.
[15] K. Raczkowski, S. Thijs, W. Raedt, B. Nauwelaers, and P. Wambacq, “50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 382-383.
[16] M. Tsai, S. Hsu, F. Hsueh, C. Jou, and T. Yeh, “Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 553-561, Jan. 2013.
[17] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “Design and implementation of configurable ESD protection cell for 60-GHz RF circuits in a 65-nm CMOS process,” Microelect. Rel., vol. 51, no. 8, pp. 1315-1324, Aug. 2011.
[18] C.-Y. Lin, L.-W. Chu, S.-Y. Tsai, M.-D. Ker, T.-H. Lu, T.-L. Hsu, P.-F. Hung, M.-H. Song, J.-C. Tseng, T.-H. Chang, and M.-H. Tsai, “Modified LC-tank ESD protection design for 60-GHz RF applications,” in Proc. Eur. Conf. Circuit Theory Design, 2011, pp. 57-60.
[19] C.-Y. Lin, L.-W. Chu, M.-D. Ker, M.-H. Song, C.-P. Jou, T.-H. Lu, J.-C. Tseng, M.-H. Tsai, T.-L. Hsu, P.-F. Hung, and T.-H. Chang, “ESD protection structure with inductor-triggered SCR for RF applications in 65-nm CMOS process,” in Proc. IEEE Int. Rel. Phys. Symp., 2012.
[20] K. Raczkowski, S. Thijs, J. Tseng, T. Chang, M. Song, D. Linten, B. Nauwelaers, and P. Wambacq, “60 GHz low noise amplifiers with 1 kV CDM protection in 40 nm LP CMOS,” in Proc. IEEE SiRF Meeting, 2012, pp. 9-12.
[21] L.-W. Chu, C.-Y. Lin, M.-D. Ker, M.-H. Song, J.-C. Tseng, C.-P. Jou, and M.-H. Tsai, “ESD protection design for wideband RF applications in 65-nm CMOS process,” in Proc. IEEE Int. Symp. Circuits Systems, 2014, pp. 1480-1483.
[22] M. Tsai and S. Hsu, “ESD protection design for microwave/millimeter wave low-noise amplifiers,” in Proc. IEEE Int. Wireless Symp., 2014.
[23] D. Linten et al., “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434-1442, Jul. 2005.
[24] C. Richier et al., “Investigation on different ESD protection strategies devoted to 3.3 V RF applications (2 GHz) in a 0.18 μm CMOS process,” J. Electrostatics, vol. 54, no. 1, pp. 55-71, Jan. 2002.
[25] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “ESD protection design for 60-GHz LNA with inductor-triggered SCR in 65-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 714-723, Mar. 2012.
[26] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901-1908, Sep. 2005.
[27] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3469-3485, Dec. 2009.
[28] T. Tokumitsu, “K-band and millimeter-wave MMICs for emerging commercial wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 11, pp. 2066-2072, Nov. 2001.
[29] K. Tsutaki, R. Seura, E. Fujiwara, and K. Tomikawa, “Development of Ka-band 100-W peak power MMPM,” IEEE Trans. Electron Devices, vol. 52, no. 5 , pp. 660-664, May 2005.
[30] F. Ellinger, “26–42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, Mar. 2004.
[31] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device Mater. Rel., vol. 5, no. 2, pp. 235-249, Jun. 2005.
[32] S. Jang, L. Lin, S. Li, and H. Chen, “Dynamic triggering characteristics of SCR-type electrostatic discharge protection circuits,” Solid-State Elect., vol. 45, no. 7, pp. 1091-1097, Jul. 2001.
[33] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 532-542, Sep. 2005.
[34] L. Tiemeijer and R. Havens, “A calibrated lumped-element de-embedding technique for on-wafer RF characterization of high-quality inductors and high-speed transistors,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 822-829, Mar. 2003.