簡易檢索 / 詳目顯示

研究生: 呂杰翰
論文名稱: 可見光飛秒雷射對細菌活性降低之研究
Study of the Bactericidal Effects of a Visible Femtosecond Laser on Escherichia coli
指導教授: 徐鏞元
Hsu, Yung-Yuan
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 74
中文關鍵詞: 可見光飛秒雷射細菌活性降低去氧核醣核酸鬆弛衝擊受激拉曼散射
英文關鍵詞: Visible femtosecond laser, bacteria inactivation, ISRS, DNA relaxation
論文種類: 學術論文
相關次數: 點閱:208下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近年來的研究中,可見光飛秒雷射被發現可應用於降低廣泛種類的微生物活性,其作用機制亦被發現與功率密度與雷射脈衝寬度有關,然而對於飛秒雷射與細菌間的交互作用而言,詳細的作用機制與理論基礎上仍有懸而未解的問題,在這篇論文中,將探討經雷射照射後大腸桿菌(Escherichia coli )的細胞膜表面性質與完整性,細菌的新陳代謝率以及質體去氧核醣核酸的構形變化,我們的研究結果顯示當受到60分鐘的雷射照射後,細菌將出現細胞質洩漏、蛋白質聚集的現象,以及細胞膜的物理性質改變,同時亦能觀察到一受到雷射功率密度倚變的超螺旋質體去氧核醣核酸之弛豫現象。而在10分鐘的短時間雷射照射下,細菌的有氧葡萄糖細胞呼吸率可在細胞質洩漏並未被觀測到的情況下損失75%的活性,針對細胞呼吸電子傳遞鍊的進一步測試中,氧化還原酶的測試結果顯示飛秒雷射對於不同種類的酶與輔酶分子造成程度不一的破壞,細菌經雷射照射後,該迅速產生的呼吸抑制效應被認為在細菌活性降低的早期過程中扮演著重要的角色。

    Visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a power density and pulse width dependent manner. However, the mechanism of how visible femtosecond laser affects the viability of bacteria is still elusive. In this thesis, the cellular surface properties, membrane integrity, metabolic rate and plasmid DNA conformation of Escherichia coli (E. coli) irradiated by a visible femtosecond laser with different power density and exposure time were investigated. Our results showed that femtosecond laser treatment for 60 minutes (min) led to cytoplasmic leakage, protein aggregation, and alternation of the physical properties of E. coli cell membrane. A power density dependent genetic damage from laser induced relaxation of supercoiled plasmid DNA was observed as well. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% of the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidase and dehydrogenases involving in E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to play a dominant effect on the early stage of bacteria inactivation.

    CHAPTER 1 INTRODUCTION 11 CHAPTER 2 THEORY 15 2.1 PRINCIPLE OF IMPULSIVE STIMULATED RAMAN SCATTERING 15 2.2 STRUCTURE OF E. COLI 20 2.3 AEROBIC RESPIRATORY OF E. COLI 21 2.4 COMMON ENZYMES AND CO ENZYMES IN RESPIRATORY CHAIN 23 2.4.1 Dehydrogenases 23 2.4.2 Quinone 24 2.4.3 Cytochrome bo oxidase 24 CHAPTER 3 25 MATERIAL AND METHOD 25 3.1 SETUP OF FEMTOSECOND LASER INACTIVATION SYSTEM 25 3.2 ATOMIC FORCE MICROSCOPY (AFM) 26 3.2.1 Poly-l-lysine Mica Preparation and Bacteria Immobilization 26 3.2.2 Air mode AFM 27 3.2.3 Liquid mode AFM 27 3.3 BACTERIA PREPARATION; PROTEIN & PLASMID EXTRACTION 28 3.3.1 Bacteria Incubation and Viability Assay 28 3.3.2 Membrane Fraction Preparation 28 3.3.3 Soluble Protein Extraction 29 3.3.4 Plasmid DNA Extraction 29 3.4 ELECTROPHORESIS 29 3.4.1 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 29 3.4.2 DNA Agarose gel electrophoresis 30 3.5 QUANTIFICATION OF CELL LEAKAGE AND FLORESCENCE IMAGING 30 3.5.1 Spectroscopic quantification 30 3.5.2 Florescence imaging 30 3.6 RESPIRATION ASSAYS 31 3.6.1 Glucose Dependent Respiratory Assay 31 3.6.2 Oxidase Assays 31 3.6.3 Dehydrogenase Assays 32 CHAPTER 4 EXPERIMENTAL RESULTS 33 4.1 INACTIVATION OF E. COLI BY 415NM FEMTOSECOND LASER 33 4.2. FEMTOSECOND LASER ALTERS THE SURFACE PHYSICAL PROPERTY OF BACTERIA 34 4.3. FEMTOSECOND LASER CAUSED LEAKAGE OF CELLULAR SUBSTANCES 37 4.4. FEMTOSECOND LASER ALTERS BACTERIAL PROTEIN EXPRESSION PROFILE 40 4.5. SHORT TIME LASER EXPOSURE AFFECTS BACTERIAL RESPIRATORY RATE 43 4.6. EFFECTS OF THE LASER ON MEMBRANE-ASSOCIATED RESPIRATORY ENZYMES 45 4.7 FEMTOSECOND LASER INDUCED PLASMID DNA RELAXATION 48 4.7.1 Assignment of the Bands in Electrophoresis 48 4.7.2 Laser Effect on the Plasmid DNA pCR II-TOPO 49 4.7.3 Laser Effect on the Plasmid DNA pBluescript 52 4.7.4 Laser Effect on the Plasmid DNA pUC 19 53 CHAPTER 5 DISCUSSION 55 5.1 NON-GENETIC DAMAGE 56 5.2 GENETIC DAMAGE 59 CHAPTER 6 67 CONCLUSIONS 67 REFERENCE 71

    [1] Hamblin M R and Hasan T 2004 Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 3 436-50
    [2] Organization W H 2014 Antimicrobial resistance: global report on surveillance: World Health Organization)
    [3] Tsen K T, Dykeman E C, Sankey O F, Tsen S W D, Lin N T and Kiang J G 2007 Probing the low-frequency vibrational modes of viruses with Raman scattering - bacteriophage M13 in water Journal of Biomedical Optics 12
    [4] Tsen K T, Dykeman E C, Sankey O F, Lin N T, Tsen S W D and Kiang J G 2006 Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy Virology Journal 3
    [5] Chou K-C 1988 Low-frequency collective motion in biomacromolecules and its biological functions Biophysical chemistry 30 3-48
    [6] Dykeman E and Sankey O 2010 Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids Phys Rev E Stat Nonlin Soft Matter Phys 81 021918
    [7] Dykeman E C, Sankey O F and Tsen K T 2007 Raman intensity and spectra predictions for cylindrical viruses Physical Review E 76
    [8] Kashef N, Ravaei Sharif Abadi G and Djavid G E 2012 Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli Photodiagnosis and Photodynamic Therapy 9 11-5
    [9] Wulf H C and Philipsen P 2004 Allergic contact dermatitis to 5-aminolaevulinic acid methylester but not to 5-aminolaevulinic acid after photodynamic therapy British Journal of Dermatology 150 143-5
    [10] Darlenski R and Fluhr J W 2012 Photodynamic therapy in dermatology: past, present, and future Journal of Biomedical Optics 18 061208-
    [11] Tsen S-W, Kingsley D, Poweleit C, Achilefu S, Soroka D, Wu T and Tsen K-T 2014 Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser Virology Journal 11 20
    [12] Tsen S W, Chapa T, Beatty W, Tsen K T, Yu D and Achilefu S 2012 Inactivation of enveloped virus by laser-driven protein aggregation Journal of Biomedical Optics 17 128002
    [13] Tsen S W, Wu T C, Kiang J G and Tsen K T 2012 Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation Journal of Biomedical Science 19 62
    [14] Tsen K T, Tsen S W D, Fu Q, Lindsay S M, Li Z, Cope S, Vaiana S and Kiang J G 2011 Studies of inactivation of encephalomyocarditis virus, M13 bacteriophage, and Salmonella typhimurium by using a visible femtosecond laser: insight into the possible inactivation mechanisms Journal of Biomedical Optics 16
    [15] Tsen S, Tsen Y, Tsen K and Wu T 2010 Selective inactivation of viruses with femtosecond laser pulses and its potential use for in vitro therapy J Healthc Eng 1 185 - 96
    [16] Tsen K T, Tsen S W D, Fu Q, Lindsay S M, Kibler K, Jacobs B, Wu T C, Karanam B, Jagu S, Roden R B S, Hung C F, Sankey O F, Ramakrishna B and Kiang J G 2009 Photonic approach to the selective inactivation of viruses with a near-infrared subpicosecond fiber laser Journal of Biomedical Optics 14
    [17] Tsen K T, Tsen S W D, Hung C F, Wu T C and Kiang J G 2008 Selective inactivation of human immunodeficiency virus with subpicosecond near-infrared laser pulses Journal of Physics-Condensed Matter 20
    [18] Tsen K T, Tsen S W D, Chang C L, Hung C F, Wu T C and Kiang J G 2007 Inactivation of viruses by coherent excitations with a low power visible femtosecond laser Virology Journal 4
    [19] Tsen K T, Tsen S W D, Chang C L, Hung C F, Wu T C and Kiang J G 2007 Inactivation of viruses by laser-driven coherent excitations via impulsive stimulated Raman scattering process Journal of Biomedical Optics 12
    [20] Tsen K T, Tsen S W D, Chang C L, Hung C F, Wu T C and Kiang J G 2007 Inactivation of viruses with a very low power visible femtosecond laser Journal of Physics-Condensed Matter 19
    [21] Tsen K T, Tsen S W D, Sankey O F and Kiang J G 2007 Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses Journal of Physics-Condensed Matter 19
    [22] Tsen K-T, Tsen S-W D, Hung C-F, Wu T-C, Kiang J G and Chang C-L 2007 Inactivation of viruses by laser-driven coherent excitations via impulsive stimulated Raman scattering process Journal of biomedical optics 12 064030--6
    [23] Liu T-M, Chen H-P, Wang L-T, Wang J-R, Luo T-N, Chen Y-J, Liu S-I and Sun C-K 2009 Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations Applied Physics Letters 94 043902
    [24] Liu T-M and Sun C-K 2009 Microwave resonant absorption method and device for viruses inactivation. Google Patents)
    [25] Tsen S, Wu T, Kiang J and Tsen K 2012 Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation J Biomed Sci 19 62
    [26] Unden G and Bongaerts J 1997 Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors Biochimica et Biophysica Acta (BBA) - Bioenergetics 1320 217-34
    [27] Ingledew W and Poole R 1984 The respiratory chains of Escherichia coli Microbiological reviews 48 222
    [28] Doktycz M J, Sullivan C J, Hoyt P R, Pelletier D A, Wu S and Allison D P 2003 AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces Ultramicroscopy 97 209-16
    [29] Bolshakova A V, Kiselyova O I, Filonov A S, Frolova O Y, Lyubchenko Y L and Yaminsky I V 2001 Comparative studies of bacteria with an atomic force microscopy operating in different modes Ultramicroscopy 86 121-8
    [30] Nečas D and Klapetek P 2012 Gwyddion: an open-source software for SPM data analysis Central European Journal of Physics 10 181-8
    [31] Shin K, Hayasawa H and Lönnerdal B 2001 Inhibition of Escherichia coli respiratory enzymes by the lactoperoxidase-hydrogen peroxide-thiocyanate antimicrobial system Journal of Applied Microbiology 90 489-93
    [32] Gaboriaud F, Dague E, Bailet S, Jorand F, Duval J and Thomas F 2006 Multiscale dynamics of the cell envelope of Shewanella putrefaciens as a response to pH change Colloids Surf B Biointerfaces 52 108-16
    [33] Gaboriaud F, Bailet S, Dague E and Jorand F 2005 Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy J Bacteriol 187 3864-8
    [34] Jin H, Huang X, Chen Y, Zhao H, Ye H, Huang F, Xing X and Cai J 2010 Photoinactivation effects of hematoporphyrin monomethyl ether on Gram-positive and -negative bacteria detected by atomic force microscopy Appl Microbiol Biotechnol 88 761-70
    [35] Cox S, Mann C, Markham J, Gustafson J, Warmington J and Wyllie S 2001 Determining the Antimicrobial Actions of Tea Tree Oil Molecules 6 87-91
    [36] Cox S D, Mann C M, Markham J L, Bell H C, Gustafson J E, Warmington J R and Wyllie S G 2000 The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil) J Appl Microbiol 88 170-5
    [37] Cox S D, Gustafson J E, Mann C M, Markham J L, Liew Y C, Hartland R P, Bell H C, Warmington J R and Wyllie S G 1998 Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli Lett Appl Microbiol 26 355-8
    [38] Tsen K T, Dykeman E C, Sankey O F, Tsen S W D, Lin N T and Kiang J G 2006 Raman scattering studies of the low-frequency vibrational modes of bacteriophage M13 in water - observation of an axial torsion mode Nanotechnology 17 5474-9
    [39] Tsen K, Tsen S, Dykeman E, Sankey O and Kiang J 2009 Contemporary Trends in Bacteriophage Research Edited by: Adams HT. Hauppauge, NY: Nova Science publishers 151-77
    [40] Lucca A, Carter‐Wientjes C, Williams K A and Bhatnagar D 2012 Blue light (470 nm) effectively inhibits bacterial and fungal growth Letters in applied microbiology 55 460-6
    [41] Soncin M, Fabris C, Busetti A, Dei D, Nistri D, Roncucci G and Jori G 2002 Approaches to selectivity in the Zn (II)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus Photochemical & Photobiological Sciences 1 815-9

    下載圖示
    QR CODE