簡易檢索 / 詳目顯示

研究生: 陳碩甫
Shuo-Fu Chen
論文名稱: 遲滯脈波寬度調變控制器於直流-直流降壓轉換器之分析
Analysis of a DC-DC Buck Converter with a Hysteretic PWM Controller
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 48
中文關鍵詞: 交換式電源脈衝寬度調變遲滯控制器降壓轉換器
英文關鍵詞: switched mode power supply, pulse width modulation, hysteretic controller, buck converter
論文種類: 學術論文
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文著重在直流-直流降壓轉換器拓樸的效率和負載暫態響應。為了得到最
    佳的直流-直流降壓轉換器之效率於可攜帶式電子產品,因此,電路設計概念主
    要以低成本、低複雜性和高效率為系統構想。
    以ESR、RfCf 兩種電路拓樸為基礎,進而提出混合的電路拓樸為混合型,也
    稱之混合型。推導數學方程式去分析直流-直流降壓轉換器之效率,並且使用模
    擬、實驗去驗證推導結果,最後根據實驗結果的分析去歸納結論和建立規則,因
    此設計人員可以了解到三種電路拓樸的各自缺點與優點。

    The purpose of this thesis is to investigate efficiency and load transient response
    on three kinds of DC to DC buck converter topology. It's for getting the best efficiency
    of DC to DC buck converters for portable electronic products. Therefore, the concept
    of circuit design constitutes a low cost, low complexity and high efficiency system.
    Based on two circuit topologies which are ESR and RfCf, the proposed mixed
    circuit scheme is ESR+RfCf, also called hybrid. We derive the mathematical formula
    for DC to DC buck converter to analyze efficiency, and also use the simulation and
    experiments to prove analysis results. According to the analysis of all experimental
    results, the next step is to draw the conclusion and make the rule. As a result, designers
    understand disadvantages and advantages of three circuit topologies.

    摘要 ................................................................ i ABSTRACT ........................................................ ii 目 錄 ........................................................... iv 圖 目 錄 ........................................................... vi 表 目 錄 ......................................................... viii 第一章 緒 論 .................................................... 1 1.1 研究背景與動機 .............................................................................................. 1 1.2 研究方法 .......................................................................................................... 3 1.3 章節簡述 .......................................................................................................... 5 第二章 直流-直流轉換器的基本原理 ................................ 6 2.1 降壓/升壓/降-升壓 拓樸架構 ...................................................................... 6 2.2 降壓轉換器基本工作原理 .............................................................................. 7 2.2.1 降壓轉換器各式拓樸 ............................................................................ 8 2.2.2 降壓轉換器波形 .................................................................................... 8 2.3 效率 .................................................................................................................. 9 2.3.1 整體效率 .............................................................................................. 10 2.3.2 元件功率損耗 ....................................................................................... 11 2.3.2.1 切換功率損失 .......................................................................... 12 2.3.2.2 傳導功率損失 .......................................................................... 14 2.3.2.3 元件功率損耗總結 .................................................................. 15 第三章 遲滯降壓控制器 .................................................................................... 16 3.1 電壓/電流/遲滯控制基本原理與架構 ......................................................... 16 3.1.1 電壓模式控制 ....................................................................................... 16 3.1.2 電流模式控制 ....................................................................................... 17 3.1.3 遲滯模式控制 ....................................................................................... 17 3.2 ESR 遲滯降壓控制器電路 ............................................................................. 19 3.3 RfCf 遲滯降壓控制器電路 ............................................................................. 20 3.4 混合型遲滯降壓控制器電路 ........................................................................ 21 第四章 實驗與分析 .............................................. 22 4.1 實驗和模擬設定 ............................................................................................ 22 4.2 效率 ................................................................................................................ 23 4.2.1 ESR 遲滯降壓控制器電路 ................................................................... 23 4.2.2.1 ESR=150mΩ ............................................................................ 24 4.2.2.2 ESR=400mΩ ............................................................................ 25 4.2.2.3 ESR=570mΩ ............................................................................ 26 4.2.2.4 三組不同ESR 值實驗的效率 ................................................ 28 4.2.2 RfCf 遲滯降壓控制器電路 ................................................................... 28 4.2.3 混合型遲滯降壓控制器電路 .............................................................. 34 4.2.4 效率總結 .............................................................................................. 36 4.3 負載暫態響應 ................................................................................................ 37 4.3.1 ESR 遲滯降壓控制器電路 ................................................................... 37 4.3.2 RfCf 遲滯降壓控制器電路 ................................................................... 38 4.3.3 混合型遲滯降壓控制器電路 .............................................................. 39 4.3.4 負載暫態響應總結 ............................................................................... 40 第五章 研究結論與未來展望 ...................................... 42 5.1 研究結論 ........................................................................................................ 42 5.1.1 切換頻率 ............................................................................................... 42 5.1.2 效率 ....................................................................................................... 42 5.1.3 負載暫態響應 ...................................................................................... 42 5.2 未來展望 ........................................................................................................ 43 參考文獻 ........................................................... 44

    [1] Ned Mohan, Tore M. Undeland , and William P. Robbins, Power Electronics:
    Converters, Applications, and Design, 3rd ed., John Wiley & Sons Inc, 2002.
    [2] TRobert V. White, “Digital Control Concepts For Power Supply Engineers”,
    Worldwide Technology Group.
    [3] Frank De Stasi and Mathem Jacob, “Magnetic Buck Converters for Portable
    Applications”, National Semiconductor.
    [Online] Available: http://www.national.com/appinfo/power/files/buck_converters.pdf
    [4] J. Sun, M. Xu, Y. Ren, and F. C. Lee, “Light-Load Efficiency Improvement for Buck
    Voltage Regulators, ” IEEE Trans. Power electronics, vol.24, no.3, pp.742-751,
    March 2009.
    [5] Siyuan Zhou and G.A. Rincón-Mora, “A high efficiency, soft switching DC-DC
    converter with adaptive current-ripple control for portable applications,” IEEE
    Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 4, pp. 319-323,
    2006.
    [6] M. Gildersleeve, H.P. Forghani-zadeh, and G.A. Rincon-Mora , “A comprehensive
    power analysis and a highly efficient, mode-hopping DC-DC converter,” IEEE
    Asia-Pacific Conference, pp. 153-156, 2002..
    [7] Sanjava Maniktala, Switching Power Supply Design & Optimization, McGraw-Hill,
    2004.
    [8] “Switch Mode Power Supply (SMPS) Topologies (Part II),” Microchip.
    [Online] Available: http://ww1.microchip.com/downloads/en/appnotes/01207b.pdf
    [9] Robert Erickson and Dragan Maksimovic, “High Efficiency DC-DC Converters for
    Battery-Operated Systems with Energy Management,” [Online] Available:
    http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDEQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdo
    wnload%3Fdoi%3D10.1.1.46.6432%26rep%3Drep1%26type%3Dpdf&ei=WAimUfS
    kIpDrlAWp9oDIBA&usg=AFQjCNEEq58-A5Hj65uVg2l9mCAjWmE-ag
    [10] Jen-Ta Su, Chung-Wen Hung, Tsun-Hsi Chang, and Chih-Wen Liu , “A novel phase
    shedding scheme for improved light load efficiency of Interleaved DC/DC converters ,”
    IEEE Applied Power Electronics Conference and Exposition, pp. 1482-1487, 2011.
    [11] O. Trescases and Wen Yue, “A survey of light-load efficiency improvement
    techniques for low-power dc-dc converters,” IEEE Power Electronics and ECCE, pp.
    326-333, 2011.
    [12] Microchip, “Switch Mode Power Supply (SMPS) Topologies (Part I).”
    [13] ON Semiconductor, “MOSFET Gate-Charge Origin and its Applications,” [Online].
    Available: http://www.onsemi.cn/pub_link/Collateral/AND9083-D.PDF
    [14] Z.J. Shen, Xiong Yali, Cheng Xu, Fu Yue, and P. Kumar, “Power MOSFET Switching
    Loss Analysis A New Insight,” IEEE Industry Applications Conference, vol. 3, pp.
    1438-1442, 2006.
    [15] G. Villar, E. Alarcon, F. Guinjoan, and A. Poveda,, “Quasi-optimum Efficiency in
    Output Voltage Hysteretic Control for a Buck Switching Converter with Wide Load
    Range, ” IEEE 36th Power Electronics Specialists Conference , pp. 2118-2125, 2005.
    [16] Zhaoxia Leng, Qingfeng Liu, Jinkun Sun, and Jian Liu, “A research of efficiency
    characteristic for Buck converter,” IEEE Industrial Mechatronics and Automation,
    vol. 1 , pp. 232-235, 2010.
    [17] Xiaohui Wu and Xiaobo Wu “Adaptive Hysteresis Window Control (AHWC)
    Technique for Hysteretic DC-DC BUCK Converter with Constant Switching
    Frequency,” IEEE Power and Energy Engineering Conference, pp. 1-4, 2010.
    [18] J.A.A. Qahouq and L. Huang, “Analysis and Design of Voltage Regulator withImproved Light Load Efficiency,” IEEE International Conference on Acoustics,
    Speech and Signal Processing, vol. 3, pp. 3, 2006.
    [19] Jim Spangler, Larry Hayes and Ron Perina, “Efficiency Improvements Using 10 Volt
    Schottky Diodes,” ON Semiconductor.
    [20] Yang Chen, P. Asadi, and P. Parto, “Comparative analysis of power stage losses for
    synchronous Buck converter in Diode Emulation mode vs. Continuous Conduction
    Mode at light load condition,” IEEE Applied Power Electronics Conference and
    Exposition, pp. 1578-1583, 2010.
    [21] B. Arbetter, R. Erickson, and D. Maksimovic, “DC-DC converter design for
    battery-operated systems,” IEEE Power Electronics Specialists Conference, vol. 1, pp.
    103-109, 2010.
    [22] S. Angkititrakul, and H. Hu, “Design and analysis of buck converter with
    pulse-skipping modulation,” IEEE Power Electronics Specialists Conference, pp.
    1151-1156, 2008.
    [23] Jiahong Lao ; Meng Tong Tan, “Design of a low swing power-efficient output stage
    for DC-DC converters,” IEEE TENCON Conference, pp. 1-6, 2009.
    [24] C.S. Mitter, “Device considerations for high current, low voltage synchronous buck
    regulators (SBR),” IEEE Wescon Conference, pp. 281-288, 1997.
    [25] Chu-Hsiang Chia, Pui-Sun Lei, and R.C.-H. Chang, “A High-Efficiency PWM
    DC-DC Buck Converter with a Novel DCM Control under Light-Load,” IEEE
    International Symposium on Circuits and Systems, pp. 237-240, 2011.
    [26] G. Villar, E. Alarcon, F. Guinjoan, and A. Poveda, “Efficiency-oriented switching
    frequency tuning for a buck switching power converter,” IEEE International
    Symposium on Circuits and Systems, vol. 3, pp. 2473-2476, May 2005.
    [27] Xunwei Zhou ; M. Donati, L. Amoroso, F.C. Lee, “ Improved light-load efficiency for synchronous rectifier voltage regulator module,” IEEE Power Electronics, vol. 15 , no.
    5, pp. 826-834, 2000.
    [28] Laili Wang ; Yunqing Pei ; Xu Yang ; Zhaoan Wang , “Improving light load
    efficiency of high frequency DC/DC converters with planar nonlinear inductors,”
    IEEE Energy Conversion Congress and Exposition, pp. 2237-2244, 2010.
    [29] J. Sun, M. Xu, Y. Ren, and F. C. Lee, “Light-Load Efficiency Improvement for Buck
    Voltage Regulators, ” IEEE Trans. Power electronics, vol.24, no.3, pp.742-751, 2009.
    [30] R. Redl and Sun Jian, “Ripple-Based Control of Switching Regulators—An Overview,”
    IEEE Power Electronics, vol. 24, no. 12, pp. 2669-680, 2009.
    [31] Analog Devices, “ADP1870/ADP1871 datasheet”. [Online] Available:
    http://www.analog.com/static/imported-files/data_sheets/ADP1870_1871.pdf
    [32] Texas Instruments, “LM3475 Hysteretic PFET Buck Controller”, [Online] Available:
    http://www.bdtic.com/DataSheet/NSC/LM3475.pdf
    [33] O. Djekic, and M. Brkovic, “Synchronous rectifiers vs. Schottky diodes in a buck
    topology for low voltage applications,” IEEE Power Electronics Specialists
    Conference, vol. 2, pp. 1374-1380, 1997.
    [34] Qahouq Abu, J.A., and L. Huang, “A constant switching frequency coupled-inductor
    VR with improved light load efficiency,” IEEE Applied Power Electronics Conference
    and Exposition, pp. 844-849, 2008.
    [35] M.D. Mulligan, B. Broach, T.H. Lee, “A constant-frequency method for improving
    light-load efficiency in synchronous buck converters,” IEEE Power Electronics
    Letters, vol. 3 , no. 1, pp. 24-29, 2005.

    下載圖示
    QR CODE