研究生: |
陳建竹 Chien-Chu Chen |
---|---|
論文名稱: |
直接成長之官能化奈米碳管於燃料電池之應用 Directly Grow Functionalized Carbon Nanotube for Fuel Cell Application |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 奈米碳管 、燃料電池 、白金 、甲醇 |
論文種類: | 學術論文 |
相關次數: | 點閱:307 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前的研究中我們以微波電漿化學氣相沈積系統(MPECVD)將奈米碳管直接成長在碳布上(CNTs-CC),再以射頻磁控濺鍍機將白金觸媒佈植於奈米碳管上(Pt/CNTs-CC),藉著奈米碳管的高導電性以及直接成長法降低介面阻值來增加白金觸媒的利用率,此外亦發現奈米碳管中摻雜氮厡子造就活性位置使得白金觸媒在奈米碳管上分散得更好,為了於奈米碳管上製造更多的活性官能基,我們在成長氣體中加入了氧氣,期望有更多的含氧官能基以及缺陷在奈米碳管表面生成。
在本研究中奈米碳管的成長氣體為CH4/H2/N2/O2流速為80/20/80/1.5 (sccm) ,在微波電漿化學氣相沈積系統中以1500 W的功率成長10分鐘,再以射頻磁控濺鍍機將白金觸媒佈植於直接成長含氧奈米碳管(Pt/O-CNT-electrode)以及一般奈米碳管上(Pt/CNT-electrode) ,並比較其電化學反應的差異。
我們以電化學方法、拉曼震動光譜、以及化學分析電子光譜得知碳管上含氧官能基的存在,並且發現Pt/O-CNT-electrode 在甲醇催化反應中遠比Pt/CNT-electrode 來的穩定,這是因為碳管表面含氧官能基的貢獻使得白金觸媒和碳材本身的作用力,加強本論文將分析此ㄧ材料的特性,並探究此材料對白金觸媒之催化活性以及穩定度方面貢獻的原因,期望能在往後的材料研究及應用面作出貢獻。
【1】 黃鎮江,” 燃料電池”,全華科技圖書股份有限公司(2003)
【2】 Wolf vielstich, Arnold Lamm, Hubert A. Gasteiger,
Handbook of Fuel cell, v1, part4, 306 (2003).
【3】 衣寶廉,”燃料電池—原理與應用”,五南圖書出版公司
(2005)
【4】 K. Kinoshita, Electrochemical Oxygen Technology,
Interscience, New York, (1992)
【5】 《科學人雜誌》2004年7月號
【6】 F. Joensen, J.R. Rostrup-Nielsen, J. Power Sources,
2002 105 195.”Conversion of hydrocarbons and alcohols
for fuel cells”
【7】 D.J. Moon, K. Sreekumar, S.D. Lee, B.G. Lee, H. S. Kim,
Appl. Catal. A:General, 2001 215 1. “Studies on gasoline
fuel processor system for fuel-cell powered vehicles
application”
【8】 T. Talahashi, M. Inoue, T. Kai, Appl.Catal. A 2001 218,
189.“Effect of metal composition on hydrogen selectivity
in steam reforming of methanol over catalysts prepared
from amorphous alloys”
【9】 S Velu, K. Suzuki, Topics in Catal. 2003 22, 235.
"Selective production of hydrogen for fuel cells via
oxidative steam reforming of methanol”
【10】 S. Iijima, Nature 354,56(1991). “Helical microtubules.
of graphitic carbon”
【11】 Guangli Che, Brinda B. Lakshmi, Ellen R. Fisher,
Charles R. Martin, Nature 393,346-349(1998).
“Formation of nitric oxidederived inflammatory oxidants
bymyeloperoxidase in neutrophils”
【12】 J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan,
Nano Letters Vol.1, No.2, 87-91(2001). “Fast Electron
Transfer Kinetics on Multiwalled Carbon Nanotube
Microbundle Electrodes”
【13】 B. Rajesh, K.R. Thampi, J.M. Bonard, B. Viswanathan, Bull.
Mater. Sci. 23 (5) (2000) 341.
【14】 V. Lordi, N. Yao, J. Wei, Chem. Mater. 13 (2001) 733.
Method for Supporting Platinum on Single-Walled
Carbon Nanotubes for a Selective Hydrogenation
Catalyst”
【15】 Craig E. Banks, Trevor J. Davies, Gregory G. Wildgoose
and Richard G.Compton, chem. Commun.,829-841 (2005).
“Electrocatalysis at graphite and carbon nanotube
modified electrodes:edge-plane sites and tube ends are
the reactive sites”
【16】 Chen-Hao Wang, Han-Chang Shih, Yu-Tai Tsai, He-Yun Du,
Li-Chyong Chen, Kuei-Hsien Chen, Electrochimica Acta 52,
1612-1617 (2006). “High methanol oxidation activity of
electrocatalysts supported by directly grown
nitrogen-containing carbon nanotubes on carbon cloth,”
【17】 C.-H. Wang, H.-Y. Du, Y.-T. Tsai, C.-P. Chen, C.-J. Huang,
L.C. Chen, K.H. Chen, H.-C. Shih, J. Power Sources 171, 55
(2007). “High performance of low electrocatalysts loading on
CNT directly grown on carbon cloth for DMFC,”
【18】 Chee Kok Poh, San Hua Lim Hui Pan, Jianyi Lin, Jim ‘Yang Lee,
Journal of Power Source 176 (2008) 70-75 “Citric acid
functionalized carbon materials for fuel cell application”
【19】 Hui Xing Huang, Shui Xia Chen, Chan’e Yuan
Journal of Power Source 175 (2008) 166-174 “Platinum
nanoparticles supported on actived carbon fiber as catalyst
for methanol oxidation”
【20】 T. Kyotani, S. Nakazaki,W.H. Xu, A. Tomita, Carbon 39 (2001)
782–785.”Chemical modification of the inner walls of
carbon nanotubesby HNO3 oxidation”,
【21】 D.B. Mawhinney, V. Naumenko, A. Kuznetsova Jr., J.T. Yates,
J. Liu, R.E. Smalley, J. Am. Chem. Soc. 122 (2000) 2383–2384.
“Infrared Spectral Evidence for the Etching of Carbon
Nanotubes: Ozone Oxidation at 298 K”
【22】 R. Yu, L. Chen, Q. Liu, J. Lin, K.L. Tan, S.C. Ng,
H.S.O. Chan, G.Q. Xu, A.T.S. Hor, Chem. Mater. 10 (1998)
718–722.“Platinum Deposition on Carbon Nanotubes via
Chemical Modification”
【23】 Masahiro Watanabe; Makoto Uchida; Satoshi Motoo Journal
of Electroanalytical Chemistry 1987, 229, 395-406.
【24】 A.S. Arico et al., Electrochimica Acta 47 (2002) 3723.
“Effect of Pt_/Ru alloy composition on high-temperature
methanol electro-oxidation.”
【25】 Guangli Che, Brinda B. Lakshmi, Ellen R. Fisher,
Charles R. Martin, Nature 393,346-349(1998).
”Carbon nanotubule membranes for electrochemical energy
storage and production”
【26】 J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan,
Nano Letter 1, (2), 87-91(2001).“Fast Electron Transfer
Kinetics on Multiwalled Carbon Nanotube Microbundle
Electrodes”
【28】 V. Lordi, N. Yao, J. Wei, Chemistry of Materials 13 (2001)
733. Method for Supporting Platinum on Single-Walled Carbon
Nanotubes for a Selective Hydrogenation Catalyst”
【29】 Craig E. Banks, Trevor J. Davies, Gregory G. Wildgoose and
Richard G.Compton, chem. Commun.,829-841 (2005).
“Electrocatalysis at graphite and carbon nanotube modified
electrodes: edge-plane sites and tube ends are the reactive
sites”