研究生: |
許雅筑 HSU,YA-CHU |
---|---|
論文名稱: |
2,4–雙氟苯甲醚之第一電子激發態暨 離子態振動光譜 Vibronic and Cation Spectroscopy of 2,4-difluoroanisole |
指導教授: |
曾文碧
Tzeng, Wen-Bih |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 共振雙光子游離光譜法 、質量解析臨界游離光譜法 、2,4–雙氟苯甲醚 、第一電子躍遷能 、游離能 |
英文關鍵詞: | resonant two-photon ionization, mass-analyzed threshold ionization, 2,4–difluoroanisole, vibronic spectra, cation spectra |
論文種類: | 學術論文 |
相關次數: | 點閱:206 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們應用高解析度共振雙光子游離(R2PI)與質量解析臨界游離光譜法(MATI),探討2,4–雙氟苯甲醚(2,4–difluoroanisole)的分子特性,精準地量測第一電子躍遷能與游離能,並記錄此分子的S1電子激發態和D0離子基態的振動光譜。D0離子基態光譜是利用第一電子激發態的00、X1、τCH3、151、9a1、6a1和11分子振動態為中間能階紀錄的。2,4–雙氟苯甲醚的第一電子躍遷能測得為35556 ± 2 cm-1,其游離能為67568 ± 5 cm-1。
在光譜上所看到大部份的振動模式,都和芳香環上的平面運動有關。比較本實驗所得到的2,4–雙氟苯甲醚和文獻上苯甲醚的光譜數據
,可以幫助我們了解氟的取代基效應在苯甲醚上,對電子躍遷和游離過程及分子振動的影響。另外我們也利用ab initio及密度泛函數理論計算來幫助我們進行分子光譜標定工作。
We applied the resonant two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) spectroscopic techniques to record the vibronic and cation spectra of 2,4–difluoroanisole. The cation spectra were obtained by ionizing via the 00, X1, τCH3, 151, 9a1, 6a1, and 11 levels of the electronically excited S1 state. The band origin of the S1 ← S0 electronic transition of 2,4–difluoroanisole appears at 35556 ± 2 cm-1 and the adiabatic ionization energy is determined to be 67568 ± 5 cm-1.
Most of the active vibrations of this molecule in the S1 and D0 states are related to in-plane vibrations of the aromatic ring. Comparing the experimental data of 2,4–difluoroanisole with those of anisole helps us learn the fluorine substitution affects on the electronic excitation and ionization processes as well as molecular vibration. We have also performed the ab initio and density functional calculations which help us in spectral assignment and support our experimental findings.
參考文獻
[1] T. Ebata, Asuka Fujii, Naohiko, Mikami, Vibrational spectroscopy of small-size hydrogen-bonded clusters and their ions, International Reviews in Physical Chemistry l7 (1998) 331-361.
[2] T. Watanabe, T. Ebata, S. Tanabe, N. Mikami, Size-selected vibrational spectra of phenol-(H2O)n (n=1-4) clusters observed by IR-UV double resonance and stimulated Raman-UV double resonance spectroscopies, J. Chem. Phys. 105 (1996) 408-419.
[3] G. Brehma, G. Sauera, N. Fritza, S. Schneidera, S. Zaitsev, Correlation spectroscopy based on non-linear response of silver colloids (including SEHRS), Journal of Molecular Structure 735 (2005) 85-102.
[4] D.E. Powers, J.B. Hopkins, R.E. Smalley, Vibrational relaxation in jet-cooled phenoxyalkanes, J. Chem. Phys. 74 (1981) 6986-6988.
[5] J.M. Dyke, H. Ozeki, M. Takahashi, M.C.R. Cockett, K. Kimura, A study of phenylacetylene and styrene, and their argon complexes PA–Ar and ST–Ar with laser threshold photoelectron spectroscopy, J. Chem. Phys. 97 (1992) 8926-8933.
[6] T. Isozaki, K. Sakeda, T. Suzuki, T. Ichimura, Fluorescence spectroscopy of jet-cooled o-fluoroanisole: Mixing through Duschinsky effect and Fermi resonance, J. Chem. Phys. 132 (2010) 214308(1)-214308(9).
[7] J.S. Lee, S.A. Krasnokutski, D.S. Yang, Theoretical studies of absorption cross sections for the C˜1B2- X˜1A1system of sulfur dioxide and isotope effects, J. Chem. Phys. 132 (2010) 024301(1)-024301(10).
[8] K. Watanabe, Photoionization and Total Absorption Cross Section of Gases. I. Ionization Potentials of Several Molecules. Cross Sections of NH3 and NO, J. Chem. Phys. 22 (1954) 1564-1570.
[9] D.W. Turner, M.I. Al Joboury, Determination of Ionization Potentials by Photoelectron Energy Measurement, J. Chem. Phys. 37 (1962) 3007-3008.
[10] G.C. King, A.J. Yencha, M.C.A. Lopes, Threshold photoelectron spectroscopy using synchrotron radiation, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33-40.
[11] T. Baer, Y. Li, Threshold photoelectron spectroscopy with velocity focusing: an ideal match for coincidence studies, Int. J. Mass Spectrom. 219 (2002) 381-389.
[12] K. Muller-Dethlefs, M. Sander, E.W. Schlag, Two-colour photoionization resonance spectroscopy of NO: Complete separation of rotational levels of NO+ at the ionization threshold, Chem. Phys. Lett. 112 (1984) 291-294.
[13] L.A. Chewter, M. Sander, K. Muller-Dethlefs, E.W. Schlag, High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential, J. Chem. Phys. 86 (1987) 4737-4744.
[14] E.W. Schlag, ZEKE Spectroscopy, Cambridge University Press, Cambridge, (1998).
[15] L. Zhu, P.M. Johnson, Mass analyzed threshold ionization spectroscopy, J. Chem. Phys. 94 (1991) 5769-5771.
[16] G.S. Hiers, F.D. Hager, Anisole, Org. Synth. 1 (1941) 58-59.
[17] H.C. Huang, B.Y. Jin, W.B. Tzeng, Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of o-chloroanisole, J. Photochem. Photobio. A 243 (2012) 73-79.
[18] H.C. Huang, K.S. Shiung, B.Y. Jin, W.B. Tzeng, Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy, Chem. Phys. 425 (2013) 114–120.
[19] D. Yu, C. Dong, M. Cheng, L. Hu, Y. Du, Q. Zhu, C. Zhang, Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of the 35Cl and 37Cl isotopomers of p-chloroanisole, J. Mol. Spectrosc. 265 (2011) 86-91.
[20] K.S. Shiung, D. Yu, S.Y. Tzeng, W.B. Tzeng, Cation spectroscopy of o-fluoroanisole and p-fluoroanisole by two-color resonant two-photon mass-analyzed threshold ionization, Chem. Phys. Lett. 524 (2012) 38-41.
[21] K.S. Shiung, D. Yu, H.C. Huang, W.B. Tzeng, Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy, J. Mol. Spectrosc. 274 (2012) 43–47.
[22] Y. Xu, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Rotamers of 3,4-difluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 102 (2013) 365–370.
[23] L. Yuan, C. Li, J.L. Lin, S.C. Yang, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of o-fluorophenol and o-methoxyphenol cations and influence of the nature and relative location of substituents, Chem. Phys. 323 (2006) 429-438.
[24] B. Zhang, C. Li, H. Su, J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of p-fluorophenol cation and the p-fluoro substitution effect, Chem. Phys. Lett. 390 (2004) 65-70.
[25] J. Huang, J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of the 35Cl and 37Cl isotopomers of p-chlorophenol and isotope effect, Chem. Phys. Lett. 422 (2006) 271-275.
[26] J.L. Lin, S.C. Yang, Y.C. Yu, W.B. Tzeng, Mass analyzed threshold ionization of p-bromoaniline:heavy atom effects on electronic transition, ionization, and molecular vibration, Chem. Phys. Lett. 356 (2002) 267-276.
[27] J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization of the 35Cl and 37Cl isotopomers of p-chloroaniline, J. Chem. Phys. 113 (2000) 4109-4115.
[28] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, C.C. Tung, Structures and vibrations of ortho-, meta-, and para- fluoroanilines in the S0 and S1 states by ab initio calculations and resonant two-photon ionization spectroscopy, J. Chem. Soc., Faraday Trans. 93 (1997) 2981-2987.
[29] J.L. Lin, W.B. Tzeng, Ionization energy of o-fluoroaniline and vibrational levels of o-fluoroaniline cation determined by mass-analyzed threshold ionization spectroscopy, Phys. Chem. Chem. Phys. 2 (2000) 3759-3763.
[30] J.L. Lin, K.C. Lin, W.B. Tzeng, Species-Selected Mass-Analyzed Threshold Ionization Spectra of m-Fluoroaniline Cation, Appl. Spectrosc. 55 (2001) 120-124.
[31] W.B. Tzeng, J.L. Lin, Ionization Energy of p-Fluoroaniline and Vibrational Levels of p-Fluoroaniline Cation Determined by Mass-Analyzed Threshold Ionization Spectroscopy, J. Phys. Chem. A 103 (1999) 8612-8619.
[32] J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization of deuterium substituted isotopomers of aniline and p-fluoroaniline: Isotope effect and site-specific electronic transition, J. Chem. Phys. 115 (2001) 743-751.
[33] W.B. Tzeng, K. Narayanan, G.C. Chang, Simultaneous Detection of C6H5NHD, C6H5ND2, C6D5NH2, C6D5NHD, and C6D5ND2 by Resonant Two-Photon Ionization Mass Spectrometry, Appl. Spectrosc. 52 (1998) 890-893.
[34] Y. Xie, H. Su, W.B. Tzeng, Rotamers of m-aminophenol cation studied by mass analyzed threshold ionization spectroscopy and theoretical calculations, Chem. Phys. Lett. 394 (2004) 182-187.
[35] Y. Xie, J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of p-aminophenol cation and the substitution effect, Chem. Phys. 305 (2004) 285-290.
[36] M. Pradhan, C.Y. Li, J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of anisole cation and the OCH3 substitution effect, Chem. Phys. Lett. 407 (2005) 100-104.
[37] J. Huang, J.L. Lin, W.B. Tzeng, Rotamers of m-cresol cation studied by mass-analyzed threshold ionization spectroscopy, Spectrochim. Acta 67 (2007) 989-994.
[38] J.L. Lin, C. Li, W.B. Tzeng, Mass-analyzed threshold ionization spectroscopy of p-methylphenol and p-ethylphenol cations and the alkyl substitution effect, J. Chem. Phys. 120 (2004) 10513-10519.
[39] J. Lin, W.B. Tzeng, Two-color resonant two-photon mass analyzed threshold ionization spectroscopy of aromatic molecules, Appl. Spectrosc. 5 (2004) 71-82.
[40] C. Li, H. Su, W.B. Tzeng, Rotamers of p-methoxyphenol cation studied by mass analyzed threshold ionization spectroscopy, Chem. Phys. Lett. 410 (2005) 99-103.
[41] L.W. Yuan, C. Li, W.B. Tzeng, Site-Specific H/D Exchange of p-Methoxyphenol Studied by Resonant Two-Photon Ionization and Mass-Analyzed Threshold Ionization Spectroscopy, J. Phys. Chem. A 109 (2005) 9481-9487.
[42] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, C.C. Tung, A study of the excited state structure and vibrations of hydroquinone by ab initio calculations and resonant two-photon ionization spectroscopy, Spectrochim. Acta 53 (1997) 2595-2604.
[43] J.L. Lin, K.C. Lin, W.B. Tzeng, Mass-Analyzed Threshold Ionization Spectroscopy of o-, m-, and p-Methylaniline Cations:Vicinal Substitution Effects on Electronic Transition, Ionization, and Molecular Vibration, J. Phys. Chem. A 106 (2002) 6462-6468.
[44] R.H. Wu, J.L. Lin, J. Lin, S.C. Yang, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of N-methylaniline, N-ethylaniline, and N,N-dimethylaniline cations: Influence of N-alkyl substitution on the ionization energy and molecular vibration, J. Chem. Phys. 118 (2003) 4929-4937.
[45] J. Lin, J.L. Lin, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of deuterium substituted N-methylaniline and N-ethylaniline cations: isotope effect on transition energy and large amplitude vibrations, Chem. Phys. 295 (2003) 97-107.
[46] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline, J. Mol. Spect. 244 (2007) 1-8.
[47] J. Lin, J. Lin, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of p-methoxyaniline cation and influence of the OCH3 substituent, Chem. Phys. Lett. 370 (2003) 44-51.
[48] J. Huang, C. Li, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of p-methylanisole cation and the substitution effect, Chem. Phys. Lett. 414 (2005) 276-281.
[49] S.C. Yang, S.W. Huang, W.B. Tzeng, Rotamers of o- and m-Dimethoxybenzenes Studied by Mass-Analyzed Threshold Ionization Spectroscopy and Theoretical Calculations, J. Phys. Chem. A 114 (2010) 11144-11152.
[50] J.L. Lin, L.C.L. Huang, W.B. Tzeng, Mass-Analyzed Threshold Ionization Spectroscopy of the Selected Rotamers of Hydroquinone and p-Dimethoxybenzene Cations, J. Phys. Chem. A 105 (2001) 11455-11461.
[51] Q.S. Zheng, T.I. Fang, B. Zhang, W.B. Tzeng, Mass-analyzed Threshold Ionization Spectroscopy of Rotamers of p-ethoxyphenol Cations and Configuration Effect, Chin. J. Chem. Phys. 22 (2009) 649-654.
[52] W.B. Tzeng, K. Narayanan, Vibronic features of p-ethylaniline, p-ethylaniline-NHD, and p-ethylaniline-ND2 by resonant two-photon ionization mass spectrometry, J. Mol. Struct. 482 (1999) 315-322.
[53] C. Qin, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Selected cis- and trans-p-methoxystyrene rotamers studied by mass-analyzed threshold ionization spectroscopy, Chem. Phys. Lett. 503 (2011) 25-28.
[54] C. Li, J.L. Lin, W.B. Tzeng, Mass-analyzed threshold ionization spectroscopy of the rotamers of p-n-propylphenol cations and configuration effect, J. Chem. Phys. 122 (2005) 44311(1)-44311(10).
[55] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, Resonance enhanced two-photon ionization studies in a supersonic molecular beam: Bromobenzene and iodobenzene, J. Chem. Phys. 73 (1980) 4816-4821.
[56] P.M. Johnson, E.C. Otis, Molecular Multiphoton Spectroscopy with Ionization Detection, Annu. Rev. Phys. Chem. 32 (1981) 139-157.
[57] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, C.C. Tung, S1←S0 transition of para-fluoroaniline studied by ab initio calculations and resonant two-photon ionization spectroscopy, Asian Journal of Spectroscopy. 1 (1997) 45-56.
[58] C. Li, M. Pradhan, W.B. Tzeng, Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect, Chem. Phys. Lett. 411 (2005) 506-510.
[59] S.Y. Tzeng, J.Y. Wu, S. Zhang, W.B. Tzeng, Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene, J. Mol. Spectrosc. 281 (2012) 40-46.
[60] V. Shivatare, W.B. Tzeng, Spectroscopic Investigation of cis-2,4-difluorophenol cation by mass-analyzed threshold ionization spectroscopy, Bull. Korean Chem. Soc. 35 (2014) 815-820.
[61] K. Kimura, Development of laser photoelectron spectroscopy based on resonantly enhanced multiphoton ionization, J.E. Spectrosc. Relat. Phenom. 100 (1999) 273-296.
[62] H. Ikoma, K.Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, Internal rotation of methyl group in o- and m-toluidine cations as studied by pulsed field ionization–zero kinetic energy spectroscopy, J. Chem. Phys. 105 (1996) 10201-10209.
[63] W.A. Chupka, Factors affecting lifetimes and resolution of Rydberg states observed in zero-electron-kinetic-energy spectroscopy, J. Chem. Phys. 98 (1993) 4520-4530.
[64] F. Merkt, MOLECULES IN HIGH RYDBERG STATES, Annu. Rev. Phys. Chem. 48 (1997) 675-709.
[65] M. D. Fayer, ELEMENT OF QUANTUM MECHANICS. Oxford (2001) 133.
[66] W.C. Wiley, I.H. Mclaren, Time‐of‐Flight Mass Spectrometer with Improved Resolution, Rev. Sci. Instrum. 26 (1955) 1150-1157.
[67] W. Baumgatner, J. Schmid, Space-charge saturation in channel electron multipliers, J. Phys. D : Appl. Phys. 5 (1972) 1769-1779.
[68] J.L. Wiza, Microchannel plate detectors , Nuclear Instruments and Methods. 162 (1979) 587-601.
[69] User’s manual (Spectra-Physics LAB-150)
[70] User’s manual (Lambda Physik Scanmate)
[71] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than Ever.
[72] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
[73] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
[74] E.B. Wilson, The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule,Physical Review. 45 (1934) 706-714.
[75] M.G.H. Boogaarts, I. Holleman, R.T. Jongma, D.H. Parker, High Rydberg states of DABCO: Spectroscopy, ionization potential, and comparison with mass analyzed threshold ionization, J. Chem. Phys. 104 (1996) 4357-4364.
[76] W.C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Vibronic and cation spectroscopy of 2,4-difluoroaniline, Spectrochim. Acta A 93 (2012) 176-179.
[77] W.C. Huang, W.L. Yeh, W.B. Tzeng, Vibronic and cation spectroscopy of m-chloroaniline, J. Mol. Spectrosc. 269 (2011) 248-253.