簡易檢索 / 詳目顯示

研究生: 張嘉雯
Chang, Chia-Wen
論文名稱: 以大腸桿菌生合成之對胺基苯甲酸定量水中硝酸鹽及亞硝酸鹽
Detection and Quantification of Nitrate and Nitrite in Water Using PABA Produced by Escherichia coli
指導教授: 葉怡均
Yeh, Yi-Chun
口試委員: 陳頌方
Chen, Sung-Fang
陳品銓
Chen, Pin-Chuan
葉怡均
Yeh, Yi-Chun
口試日期: 2023/06/21
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 硝酸鹽亞硝酸鹽定量檢測比色法
英文關鍵詞: nitrate, nitrite, quantitative detection, colorimetry
研究方法: 實驗設計法行動研究法準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300978
論文種類: 學術論文
相關次數: 點閱:69下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們實驗室提出以全細胞生物感測器來有效檢測並定量水中的硝酸鹽及亞硝酸鹽的方法,參考葡萄糖在大腸桿菌中的代謝路徑建構之質體轉殖入 E. coli BL21(DE3),其製造的T7 RNA polymerse (RNAP)會開啟T7啟動子製造下游蛋白,這些蛋白會加速葡萄糖代謝成為4-Aminobenzoic acid (PABA),使我們在短時間內就可以得到大量PABA,其經由一系列反應得到最終產物在540 nm有最大吸收的色素,以吸收回推濃度、再以大腸桿菌還原硝酸鹽為亞硝酸鹽後並以同樣反應定量出硝酸鹽濃度。

    In this study, we propose a method for the efficient detection and quantification of nitrate and nitrite in water using biosynthesis product 4-Aminobenzoic acid (PABA). Referring to the metabolic pathway of glucose in E. coli, the plasmid constructed is transformed into E.coli BL21(DE3). The T7 RNA polymerse (RNAP) produced by E. coli BL21(DE3) will turn on the T7 promoter to produce downstream proteins, which will accelerate glucose metabolism into PABA, so that we can obtain a large amount of PABA in a short time. PABA passes through a series of reactions to obtained the pigment as final product, which the maximum absorbance is at 540 nm. The concentration is calculated by the absorbance, and the nitrate is reduced by E. coli and quantified by the same reaction.

    謝誌 i 中文摘要 ii Abstract iii 縮寫表 iv 目錄 v 圖目錄 viii 表目錄 x Chapter 1 Introduction 1 1.1全細胞生物感測器 (Whole-cell biosensor) 1 1.1.1生物感測器 1 1.1.2 大腸桿菌 2 1.2 葡萄糖在大腸桿菌中的代謝路徑 4 1.2.1中心代謝路徑 (Central metabolic pathway) 4 1.2.2 PTS (Carbohydrate phosphotransferase system) 6 1.2.3 五碳糖磷酸路徑 (Pentose phosphate pathway) 8 1.2.4 莽草酸路徑 (Shikimate pathway) 11 1.2.4.1 DAHP通過DHQS生成DHQ 12 1.2.4.2 3-脫氫莽草酸 (DHS) 和莽草酸的合成 14 1.2.4.3 莽草酸3-磷酸 (S3P) 的合成 15 1.2.4.4 合成5-enolpyruvylshikimate 3-phosphate (EPSP) 16 1.2.4.5 分支酸的合成 17 1.2.5 葉酸代謝路徑 (Folic acid pathway) 18 1.3 應用代謝路徑大量製造PABA 19 1.4 實驗原理 22 1.5 革利士商用試劑 (Griess reagent) 23 1.6 實驗動機與目的 24 1.7 文獻回顧 25 Chapter 2 Experimental Methods and Materials 28 2.1 實驗儀器 28 2.2 實驗藥品 30 2.3 基因工程 33 2.3.1 畫盤 (Plate streaking) 33 2.3.2 抽取質體 (Plasmid extraction) 34 2.3.3 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 34 2.3.4 膠體電泳 (Gel electrophoresis)與膠體萃取 (Gel extraction) 36 2.3.5 限制酶切割 (Restriction enzyme digestion) 38 2.3.6 接合 (Ligation) 39 2.3.7 Golden Gate Assembly 40 2.3.8 突變 (Mutagenesis) 42 2.3.9 轉殖作用 (Transformation) 44 2.3.10 質體檢查 (PCR check) 44 2.3.11 定序 (Sequencing) 45 2.3.12 存菌 (Glycerol stock) 46 2.4 對胺基苯甲酸感測器設計與實驗方法 46 2.4.1 質體設計 46 2.4.2 PABA培養過程 47 2.5.3 亞硝酸鹽定量 48 2.5.4 硝酸鹽還原蛋白培養及定量方法 48 2.5.4 選擇性測試 49 2.5.5 真實樣品前處理 49 2.5.6 HPLC樣品前處理及機器參數 50 Chapter 3 Results and discussion 51 3.1亞硝酸鹽檢測 51 3.1.1 HPLC定量結果 51 3.1.2 PABA生合成條件確認 52 3.1.3 條件優化 54 3.1.4 亞硝酸鹽檢量線 56 3.1.5 選擇性測試 57 3.1.6 真實樣品測試 58 3.2硝酸鹽檢測 59 3.2.1 硝酸鹽還原蛋白 59 3.2.1 DH5α還原能力測試 61 3.2.2 硝酸鹽檢量線 63 3.2.3 同時定量硝酸鹽及亞硝酸鹽 64 3.2.4 真實樣品測試 65 Chapter 4 Conclusions 67 4.1 結論 67 4.2 未來方向 67 附錄 68 附錄1 菌種 68 附錄2 質體 69 附錄3 引子 70 附錄4 HPLC定量結果 71 附錄5 質體設計 72 References 73

    Ziegler, C.; Göpel, W., Biosensor development. Current opinion in chemical biology 1998, 2 (5), 585-591.
    Gu, M. B.; Mitchell, R. J.; Kim, B. C., Whole-cell-based biosensors for environmental biomonitoring and application. Biomanufacturing 2004, 269-305.
    Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E., The population genetics of commensal Escherichia coli. Nature reviews microbiology 2010, 8 (3), 207-217.
    Nataro, J. P.; Kaper, J. B., Diarrheagenic escherichia coli. Clinical microbiology reviews 1998, 11 (1), 142-201.
    Erlich, H. A.; Gelfand, D.; Sninsky, J. J., Recent advances in the polymerase chain reaction. Science 1991, 252 (5013), 1643-1651.
    Anton, B. P.; Raleigh, E. A., Complete genome sequence of NEB 5-alpha, a derivative of Escherichia coli K-12 DH5α. Genome announcements 2016, 4 (6), e01245-16.
    Jeong, H.; Barbe, V.; Lee, C. H.; Vallenet, D.; Yu, D. S.; Choi, S.-H.; Couloux, A.; Lee, S.-W.; Yoon, S. H.; Cattolico, L., Genome sequences of Escherichia coli B strains REL606 and BL21 (DE3). Journal of molecular biology 2009, 394 (4), 644-652.
    Dumon-Seignovert, L.; Cariot, G.; Vuillard, L., The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21 (DE3), C41 (DE3), and C43 (DE3). Protein expression purification 2004, 37 (1), 203-206.
    Holms, W., The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Current topics in cellular regulation 1986, 28, 69-105.
    Baron, S., Medical microbiology. 1996.
    Kogure, T.; Inui, M., Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Applied microbiology biotechnology 2018, 102, 8685-8705.
    Nam, T.-W.; Cho, S.-H.; Shin, D.; Kim, J.-H.; Jeong, J.-Y.; Lee, J.-H.; Roe, J.-H.; Peterkofsky, A.; Kang, S.-O.; Ryu, S., The Escherichia coli glucose transporter enzyme IICBGlc recruits the global repressor Mlc. The EMBO journal 2001, 20 (3), 491-498.
    Postma, P. W.; Lengeler, J. W.; Jacobson, G., Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiological reviews 1993, 57 (3), 543-594.
    Escalante, A.; Salinas Cervantes, A.; Gosset, G.; Bolívar, F., Current knowledge of the Escherichia coli phosphoenolpyruvate–carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Applied microbiology biotechnology 2012, 94, 1483-1494.
    Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M. M.; Campbell, K.; Cheung, E.; Olin‐Sandoval, V.; Grüning, N. M.; Krüger, A.; Tauqeer Alam, M., The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews 2015, 90 (3), 927-963.
    Gupta, R.; Gupta, N., Fundamentals of Bacterial Physiology and Metabolism. Springer: 2021.
    Atwell, B. J.; Kriedemann, P. E.; Turnbull, C. G., Plants in action: adaptation in nature, performance in cultivation. Macmillan Education AU: 1999.
    Herrmann, K. M.; Weaver, L. M., The shikimate pathway. Annual review of plant biology 1999, 50 (1), 473-503.
    Nunes, J. E.; Duque, M. A.; de Freitas, T. F.; Galina, L.; Timmers, L. F.; Bizarro, C. V.; Machado, P.; Basso, L. A.; Ducati, R. G., Mycobacterium tuberculosis shikimate pathway enzymes as targets for the rational design of anti-tuberculosis drugs. Molecules 2020, 25 (6), 1259.
    Bender, S. L.; Mehdi, S.; Knowles, J. R., Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry 1989, 28 (19), 7555-7560.
    Santos-Sánchez, N. F.; Salas-Coronado, R.; Hernández-Carlos, B.; Villanueva-Cañongo, C., Shikimic acid pathway in biosynthesis of phenolic compounds. Plant physiological aspects of phenolic compounds 2019, 1, 1-15.
    Green, J. M.; Matthews, R. G., Folate biosynthesis, reduction, and polyglutamylation and the interconversion of folate derivatives. EcoSal Plus 2007, 2 (2).
    Maynard, C.; Cummins, I.; Green, J.; Weinkove, D., Folic acid instability and bacterial metabolism combine to impact C. elegans development and ageing.
    Maynard, C.; Weinkove, D., Bacteria increase host micronutrient availability: mechanisms revealed by studies in C. elegans. Genes nutrition 2020, 15 (1), 1-11.
    Koma, D.; Yamanaka, H.; Moriyoshi, K.; Sakai, K.; Masuda, T.; Sato, Y.; Toida, K.; Ohmoto, T., Production of p-aminobenzoic acid by metabolically engineered Escherichia coli. Bioscience, Biotechnology, Biochemistry 2014, 78 (2), 350-357.
    Kubota, T.; Watanabe, A.; Suda, M.; Kogure, T.; Hiraga, K.; Inui, M., Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metabolic engineering 2016, 38, 322-330.
    Griess test. https://en.wikipedia.org/wiki/Griess_test
    Salama, M. F.; Abbas, A.; Darweish, M. M.; El-Hawwary, A. A.; Al-Gayyar, M. M., Hepatoprotective effects of cod liver oil against sodium nitrite toxicity in rats. Pharmaceutical biology 2013, 51 (11), 1435-1443.
    Fan, A. M.; Steinberg, V. E., Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regulatory toxicology pharmacology 1996, 23 (1), 35-43.
    Walker, R., Nitrates, nitrites and N‐nitrosocompounds: A Review of the Occurrence in Food and Diet and the Toxicological Implications. Food Additives Contaminants 1990, 7 (6), 717-768.
    Kyrtopoulos, S., N-nitroso compound formation in human gastric juice. Cancer surveys 1989, 8 (2), 423-442.
    EPA, U., United States Environmental Protection Agency, National primary drinking water regulations: In Radionuclides Rule. Federal Register 2001, 76708-76753.
    MacArthur, P. H.; Shiva, S.; Gladwin, M. T., Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. Journal of Chromatography B 2007, 851 (1-2), 93-105.
    Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M., Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Analytical chemistry 2011, 83 (21), 8245-8251.
    Lin, Z.; Dou, X.; Li, H.; Ma, Y.; Lin, J.-M., Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate. Talanta 2015, 132, 457-462.
    Sui, Y.; Deng, M.; Xu, S.; Chen, F., Gold nanocluster-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of nitrite. RSC advances 2015, 5 (18), 13495-13501.
    Gill, A.; Zajda, J.; Meyerhoff, M. E., Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples. Analytica chimica acta 2019, 1077, 167-173.
    Li, H.; Meininger, C. J.; Wu, G., Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences Applications 2000, 746 (2), 199-207.
    Butt, S. B.; Riaz, M.; Iqbal, M. Z., Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography. Talanta 2001, 55 (4), 789-797.
    Jobgen, W. S.; Jobgen, S. C.; Li, H.; Meininger, C. J.; Wu, G., Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. Journal of Chromatography B 2007, 851 (1-2), 71-82.
    Campanella, B.; Onor, M.; Pagliano, E., Rapid determination of nitrate in vegetables by gas chromatography mass spectrometry. Analytica Chimica Acta 2017, 980, 33-40.
    Murray, E.; Roche, P.; Briet, M.; Moore, B.; Morrin, A.; Diamond, D.; Paull, B., Fully automated, low-cost ion chromatography system for in-situ analysis of nitrite and nitrate in natural waters. Talanta 2020, 216, 120955.
    Melanson, J. E.; Lucy, C. A., Ultra-rapid analysis of nitrate and nitrite by capillary electrophoresis. Journal of Chromatography A 2000, 884 (1-2), 311-316.
    Öztekin, N.; Nutku, M. S.; Erim, F. B., Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food chemistry 2002, 76 (1), 103-106.
    Della Betta, F.; Vitali, L.; Fett, R.; Costa, A. C. O., Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta 2014, 122, 23-29.
    Kalaycıoğlu, Z.; Erim, F. B., Simultaneous determination of nitrate and nitrite in fish products with improved sensitivity by sample stacking-capillary electrophoresis. Food analytical methods 2016, 9, 706-711.
    Kamilova, N.; Kalaycıoğlu, Z.; Gölcü, A. e. l., Sample Stacking–Capillary Electrophoretic Analysis of Nitrate and Nitrite in Organic-and Conventional-Originated Baby Food Formulas from Turkey. ACS Omega 2023.
    Kazemzadeh, A.; Ensafi, A. A., Simultaneous determination of nitrite and nitrate in various samples using flow-injection spectrophotometric detection. Microchemical Journal 2001, 69 (2), 61-68.
    Miranda, K. M.; Espey, M. G.; Wink, D. A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide 2001, 5 (1), 62-71.
    Cheng, Y.-H.; Kung, C.-W.; Chou, L.-Y.; Vittal, R.; Ho, K.-C., Poly (3, 4-ethylenedioxythiophene)(PEDOT) hollow microflowers and their application for nitrite sensing. Sensors Actuators B: Chemical 2014, 192, 762-768.
    García-Robledo, E.; Corzo, A.; Papaspyrou, S., A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chemistry 2014, 162, 30-36.
    Zhang, L.; Wu, X.; Yuan, Z.; Lu, C., π-Conjugated thiolate amplified spectrophotometry nitrite assay with improved sensitivity and accuracy. Chemical Communications 2018, 54 (86), 12178-12181.
    Radhakrishnan, S.; Krishnamoorthy, K.; Sekar, C.; Wilson, J.; Kim, S. J., A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Applied Catalysis B: Environmental 2014, 148, 22-28.
    Kung, C.-W.; Chang, T.-H.; Chou, L.-Y.; Hupp, J. T.; Farha, O. K.; Ho, K.-C., Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications 2015, 58, 51-56.
    Haldorai, Y.; Kim, J. Y.; Vilian, A. E.; Heo, N. S.; Huh, Y. S.; Han, Y.-K., An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sensors Actuators B: Chemical 2016, 227, 92-99.
    Li, X.; Ping, J.; Ying, Y., Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends in Analytical Chemistry 2019, 113, 1-12.
    Nasraoui, S.; Al-Hamry, A.; Teixeira, P. R.; Ameur, S.; Paterno, L. G.; Ali, M. B.; Kanoun, O., Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. Journal of Electroanalytical Chemistry 2021, 880, 114893.
    Restriction Endonucleases: Molecular Cloning and Beyond. https://international.neb.com/products/restriction-endonucleases/restriction-endonucleases/restriction-endonucleases-molecular-cloning-and-beyond.
    Golden Gate Assembly. https://international.neb.com/golden-gate/golden-gate.
    KLD Enzyme Mix. https://international.neb.com/products/m0554-kld-enzyme-mix#Product%20Information.
    Aukema, K. G.; Wackett, L. P., Inexpensive microbial dipstick diagnostic for nitrate in water. Environmental Science: Water Research Technology 2019, 5 (2), 406-416.
    Váradi, L.; Breedon, M.; Chen, F. F.; Trinchi, A.; Cole, I. S.; Wei, G., Evaluation of novel Griess-reagent candidates for nitrite sensing in aqueous media identified via molecular fingerprint searching. RSC advances 2019, 9 (7), 3994-4000.
    Wang, H.; Gunsalus, R. P., Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. Journal of bacteriology 2003, 185 (17), 5076-5085.
    Kiley, P. J.; Beinert, H., Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS microbiology reviews 1998, 22 (5), 341-352.
    Pinske, C.; Bönn, M.; Krüger, S.; Lindenstrauß, U.; Sawers, R. G., Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21 (DE3). PLoS One 2011, 6 (8), e22830.

    下載圖示
    QR CODE