簡易檢索 / 詳目顯示

研究生: 杜麗靜
DU, Li-Jing
論文名稱: 積木活動中教師引導方式與幼兒物理知識建構之研究
The Teacher’s Guidance and Children’s Physical Knowledge Construction in Building Blocks
指導教授: 簡淑真
Chien, Shu-Chen
學位類別: 博士
Doctor
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 296
中文關鍵詞: 大班幼兒物理知識教師引導積木活動
英文關鍵詞: 5-year-old preschooler, physical knowledge, teacher’s guidance, building blocks
DOI URL: http://doi.org/10.6345/NTNU202001584
論文種類: 學術論文
相關次數: 點閱:144下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探究在大班積木活動中,教師引導幼兒透過操弄積木等素材建構物理知識的意圖與方式,以及幼兒在教師引導後透過操弄積木等素材建構的物理知識內涵及歷程。研究者本身即爲研究工具,選取J市JY幼兒園大班一位教師與六位幼兒爲研究參與者,採非參與式觀察、訪談、文件檔案方法,藉助兩套單位積木、一套螺母積木和其他配件爲媒介進行積木活動。研究發現如下:

    一、活動初期教師多以聯結幼兒生活與積木活動經驗,引發幼兒關注物理現象,熟悉新素材爲意圖介入;活動中,若幼兒遇到困難,教師以允許幼兒嘗試並調整,引發個別幼兒思考,促進幼兒解決問題爲意圖介入;當教師發現幼兒有突出表現,會以知識分享爲意圖介入。教師多使用提問、鼓勵體驗或嘗試等方式引導幼兒進一步思考或探索;當教師在語言提醒未果之際便採用動作示範引導幼兒注意新構建方式;該教師擅長以模型比擬建築物引發幼兒觀察與操作。

    二、幼兒建構了四類物理知識,幼兒建構的維持建築物「穩固」知識涵括了「什麼是穩固」與「影響穩固的要素」(材料、搭建順序、搭建方式),從單個因素逐漸演化到聯合多個因素考量維持物體穩固的內涵。幼兒建構的維持物體「平衡」知識涵括「影響平衡的要素」(物體的重量與距離),從單個物體的平衡要素延伸到吊機不同部分的局部平衡,進而綿延到吊機吊起物體的平衡。幼兒建構的「物體移動」知識是從「費力地移動」過度到「省力地移動」,進而聚焦到「物體滾動」的物理知識,該知識包含了滾動條件與要素。幼兒建構的「滑輪操作與運作」的知識分爲轉動方式與轉動方向兩個內涵,幼兒先建構關於滑輪操作的基本知識,在此之上建構「滑輪運作」的概念。每位幼兒在活動中所敏感覺知的現象略有不同,他們在教師引導後透過互相觀察與借鑑、提醒與糾正影響同儕。
    基於研究發現與結論而提出實務面向的建議及未來研究的建議。

    This study aims to explore the intentions and ways of a teacher to guide 5-year-old children to construct physical knowledge by manipulating blocks in the building blocks, as well as the physical knowledge connotations and process constructed by children through playing with building blocks and other materials. The researcher himself was a research tool, selecting one teacher and six children of 5-year-old in SY kindergarten of J City as participants. With nonparticipant observation, interview and document analysis as methods of collecting data, the mediums of building blocks are two sets of unit blocks, one set of Rigamajig and other accessories. The findings were as follows:
    First, at the beginning, the teacher had intended to get involved in the building blocks by connecting children’s life experience with building blocks, arousing children’s attention to physical phenomena,getting familiar with new materials. During the process, if children had encountered difficulties, the teacher would intend to encourage children to try and change, inspiring individual to think, and promoting children to solve problems. However, when the teacher had founded children’s outstanding performance, she would intend to getting involved in building blocks with sharing knowledge.The teacher had used many methods such as asking questions and encouraging children to expand their experience for thinking and exploring in depth. When the teacher had failed to remind children with words, she had used action demonstration to guide children for paying attention to new construction methods. The teacher was good at comparing models with something to inspire children to observe and operate.
    Secondly, the children had constructed four kinds of physical knowledge. The "stability" knowledge constructed by children had consisted of "what is stability" and "the factors which influence stability"(materials, construction sequence, construction methods).The improvement process of the knowledge had evolved from single factor affects stability to multiple factors affect stability.
    The knowledge of “balance” had included the “elements which affect balance”(weight and distance). The advanced process of this knowledge had extended from the balanced elements of a single object to the partial balance of different parts of the crane, and then extended to the balance elements of the overall balance of the crane.
    The knowledge of "object movement" constructed by 5-year-old children had evolved from "moving with difficulty" to "moving effortlessly", and then focusing on the physical knowledge of "object rolling", which contains the rolling conditions and elements.
    The knowledge of "pulley manipulation and operation" had included two parts: rotation mode and direction of rotation. The advanced development of this knowledge had been constructed from the basic knowledge of "pulley manipulation" to “pulley operation in a functional device".
    The children had various of sensitive consciousness to physical phenomena.Being guided by the teacher, they had influenced the physical knowledge construction of their peers by observing and learning from each other, reminding and correcting by each other.
    Accordingly, the study went further to give suggestions of practical-oriented and suggestions for future research.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 10 第三節 名詞釋義 11 第四節 研究限制 13 第二章 文獻探討 15 第一節 幼兒積木活動的涵義及相關研究 15 第二節 幼兒教師在積木活動中的引導 41 第三節 幼兒物理性知識的內涵及研究 53 第三章 研究方法 75 第一節 研究場域 75 第二節 研究參與者 82 第三節 研究者角色 89 第四節 資料蒐集與分析 92 第五節 研究信實度 108 第六節 研究倫理 110 第四章 研究發現 111 第一節 教師引導與幼兒建構維持物體「穩固」的物理知識 111 第二節 教師引導與幼兒建構維持物體「平衡」的物理知識 180 第三節 教師引導與幼兒建構讓「物體移動」的物理知識 211 第四節 教師引導與幼兒建構「滑輪操作與運作」的物理知識 235 第五章 結論與建議 259 第一節 結論 259 第二節 建議 266 參考文獻 270 附錄一 知情同意書 285 附錄二 訪談提綱 286 附錄三 開放性編碼舉隅 289 附錄四 編碼形成類別舉隅 292 附錄五 類別形成主題舉隅 294 附錄六 教師的反省札記(遴選範例) 295

    方建華、遊靜(2015)。建構遊戲中兒童合作性探索行爲的類別及特徵分析。教育導刊,12,19-23。
    王芳、朱瑤(2011)。基於主題活動編織課程之網——“蛛網式”課程整合的“附幼模式”。載於浙江師範大學杭州幼兒師範學院幼教集團(編著)。故事在主題中開始——蛛網式幼兒園主題活動案例集(1-18頁)。杭州:浙江大學出版社。
    李正清譯(2017)。早期STEM教學:科學、技術、工程與數學的整合活動(原作者:Moomaw,S.)。南京:南京師範大學出版社。
    李其瑋、黃格崇、楊青原(2016)。從造形創作到邏輯思考與空間掌握——Soma cube 積木活動的經驗省思,設計與環境學報,17,37-50。
    吳美姬、周俊良(2017)。積木建構遊戲的歷史演進及其對幼兒教育之影響。樹德人文社會電子學報,13(1),69-94。
    吳淑美、魏淑君(2012)。幼兒“滾動”的物理知識探究歷程-以“滾動的遊戲”爲例。兒童照顧與教育,3,59-79。
    吳雅玲、許惠欣(2008)。積木遊戲——幼兒單位積木的遊戲類型。幼兒教保研究期刊,10,19-43。
    吳鷰儀、張佩玉、蔡其蓁、林聖曦、陳雅惠、林玉霞、梁珀華譯(2008)。幼兒遊戲:0-8歲幼兒園實務爲導向(原作者:Johnson, J. E., Christie, J. & Wardle, F.)。臺北:華騰。
    邱淑慧、黃惠雯(2010)。讓故事更生動!探討引導學齡前幼兒創作數位故事之策略。幼兒教育年刊,21,165-194。
    邱學青(2008)。學前兒童遊戲。南京:江蘇教育出版社。
    保心怡(2018)。幼兒、積木與教師相遇的風景。取自倪鳴香、柯秋桂主編。積木世界:幼兒經驗與創意的展現(7-8頁)。臺北:成長基金會出版。
    洪文東、李長燦(2008)。物理知識活動融入幼兒園主題教學之設計與省思。幼兒保育學刊,6,1-12。
    柯秋桂(2018)。可玩、可學、可教單位積木的教學性。取自倪鳴香、柯秋桂主編。積木世界:幼兒經驗與創意的展現(23-39頁)。臺北:成長基金會出版。
    陳向明(2000)。質的研究方法與社會科學研究。北京:教育科學。
    陳淑敏(2018)。幼兒科學教育:探究取向。臺北:心理。
    陸錦英、周秀霞(2015)。我是陀螺高手——遊戲中幼兒獲得的物理知識。幼兒教育,318,46-51。
    陳燕珍(譯)(1999)。幼兒物理知識活動——皮亞傑理論在幼兒園中的應用。(原作者:Kamii, C. & DeVries, R.)。臺北:光佑。
    黃又青(譯)(1998)。男孩與女孩-娃娃家的超級英雄(原作者:Paley, V.G.)。臺北市:光佑。(原出版年:1984)。
    黃文樹(2007)。幼稚教育的理論與實務研究(一)。臺北:秀威資訊。
    黃光雄(主譯)(2001)。質性教育研究:理論與方法(原作者:Bogdan, R. C.,& Biklen, S. K.)。嘉義市:濤石文化。
    張雅瀟、方建華(2018)。積木遊戲空間密度對中班幼兒遊戲行爲的影響。學前教育研究,279(3),54-63。
    黃蓉珊(2018)。斜面與滾動-玩的文化傳承。取自倪鳴香、柯秋桂主編。積木世界:幼兒經驗與創意的展現(115-136頁)。臺北:成長基金會出版。
    張瑩、華愛華(2009)。遊戲時長對幼兒積木遊戲行爲與作品的影響。學前教育研究,2,36-43。
    鈕文英(2017)。質性研究方法與論文寫作。臺北:雙葉書廊。
    傅任敢譯(1990)。教育漫話(原著作:Some thoughts concerning education)。臺北:五南(原出版時間:1693年)。
    曾昭炳,姚繼軍(2020)。尋找“最佳證據”:如何運用元分析進行文獻探討——以STEM教育對學生成績的影響研究爲例。華東師範大學學報教育科學版,6,70-85。
    楊秀惠、陳嘉彌(2007)。積木角遊戲活動引爆創造力之哲思。幼兒保育學刊,(8),87-112。
    楊楓(2016)。學前兒童遊戲(第二版)。北京:高等教育出版社。
    楊瓊、吳念陽、沈科娜(2017)。積木建構遊戲與早期數學價值的研究綜述。早期教育(教科研版),12,48-53。
    廖信達。(2004)。幼兒遊戲。臺北:群英。
    劉焱(2004)。兒童遊戲通論。北京:北京師範大學出版社。
    簡楚瑛(2016)。幼兒教育課程模式(第四版)。臺北:心理。
    蘇文賢譯(2015)。如何理解研究:使用者指南(原作者:Creswell, J. W.&Clark, V. L. P.)。臺北:學富文化。
    Anastasiou, L., Kostaras, N., Kyritsis, E., & Kostaras, A. (2015). The construction of scientific knowledge at an early age: Two crucial factors. Creative Education, 6, 262-272.
    Bairaktarova, D., Evangelou, D., Bagiati, A.,&Brophy, S.P. (2011). Early engineering in young children’s exploratory play with tangible materials. Children, Youth and Environments, 21, 212-235.
    Barad, K. (2014). Queering time: Material entanglements, temporal diffractions and rememberings. New York, NY:Columbia University.
    Barton, E. E., Ledford, J. R., Zimmerman, K. N.,& Pokorski, E. A. (2018). Increasing the engagement and complexity of block play in young children. Education and Treatment of Children,41(2),169-196.
    Berk, L. A. (2002). Infants, children, and adolescents(4thed.). Boston: Allyn & Bacon.
    Bonawitz, E.B., van Schijndel, T.J.P., Friel,D.,&Schulz, L.(2012). Children balance theories and evidence in exploration, explanation, and learning. Cognitive Psychology, 64, 215-234.
    Borriello, G. A., & Liben, L. S. (2018). Encouraging maternal guidance of preschoolers’ spatial thinking during block play. Child Development, 89, 1209–1222.
    Caldera, Y. M., McDonald Culp, A., O'Brien, M., Truglio, R. T., Alvarez, M., & Huston, A. C. (1999). Children's play preferences, construction play with blocks, and visual-spatial skills: Are they related? International Journal of Behavioral Development, 23(4), 855-872.
    Callanan, M.A. & Braswell, G. (2006). Parent-Child Conversations about Science and Literacy. In N. Burbules, & D. Silberman-Keller (Eds.). Learning in Places: The Informal Education Reader (pp.123-137). New York, NY: Peter Lang.
    Callanan, M. A.,&Oakes, L. M. (1992).Preschoolers’ questions and parents explanations: Causal thinking in everyday activity. Cognitive development,7, 213-233.
    Canada Wood Products de bois canadien. (2003).Canada wood export program annual report 2005-2006. Her Majesty the Queen in Right of Canada. Retrieved from https://cfs.nrcan.gc.ca/pubwarehouse/ pdfs/29526.pdf.
    Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samer, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269-309.
    Cavanaugh, D. M., Clemence, K. J., Teale, M. M., Rule, A. C., &Montgomery, S. E. (2016). Kindergarten scores, storytelling, executive function, and motivation improved through literacy-rich guided play. Early Childhood Education Journal, 45, 831-843.
    Chaille, C., & Britain, L. (1991).The young child as scientist. New York, NY: Harper Collins.
    Christakis, D. A., Zimmerman, F., Garrison, M. (2007). Effect of block play on language acquisition and attention in toddlers. American Medical Association, 161(10), 967-971.
    Chun,S.(1999).Two current approaches to science in early education:The physical-knowledge approachby Kamii and DeVries and the science education approach by Diane Dodge(Graduate Research Papers). University of Northern Iowa.
    Clements, D. H., & Conference Working Group. (2004). Part one: Major themes and recommendations. In Clements, D. H., Sarama, J. & DiBiase, A. M. (Eds.). Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 1-72). Science and Education, 19(9), 1-113.
    Clements, D. H., & Sarama, J. (2009). Rethinking early mathematics: What is research-Based curriculum for young children? In English, L. D., & Mulligan, J. T. (Eds.). Reconceptualizing early mathematics learning(pp.121-147). New York, NY: Springer dordrecht Heidelberg.
    Coffino, J. (2017). How did 'Anji Play' go global? Retrieved from https://
    medium.com/@AnjiPlay/how-did-anji-play-go-globa18ele4bca996.
    Coffino, J. R. & Bailey, C. (2019). The Anji play ecology of early learning. Childhood Education, 1,3-9.
    Cohen, L., & Uhry, J. (2007). Young children’s discourse strategiesduring block play: A Bakhtinian approach. Journal of Research in Childhood Education, 21(3), 302-315.
    Copple, C., Sigel, I. E., & Saunders, R. (1984). Educating the Young Thinker. New York, NY: D. Van Nostrand Co.
    Counsell, S., Escalada, L., Geiken, R., Sander, M., Uhlenberg, J., Van Meeteren, B., Yoshizawa, S., & Zan, B. (2016). STEM Learning with young children:Inquiry teaching with ramps and pathways. New York, NY:Amsterdam Avenue.
    Cuffaro, H. K. (2015). Millstones in the history of blocks as a learning tool. Young Children,3,7.
    DeVries, R. (2004). Why the child's construction of relationships is fundamentally important toconstructivist teachers. Prospects, 4,411-422.
    Dodge, D. T., Jablon, J. R., & Bickart, T. S. (1994). Constructing curriculum forprimary grades. Washington, DC: Teaching Strategies, Inc.
    Edens, K. M.& Potter, E. F. (2013). An exploratory look at the relationships amongmath skills, motivational factors and activity choice. Early Childhood Education Journal,41(3),235-243.
    Ferrara, K., Hirsh-Pasek, K., Newcombe, N. S., Golinkoff, R. M. & Lam, W. S. (2011). Block talk: Spatial language during block play. Mind, Brain, and Education, 5(3), 143-151.
    Fisher, K. R., Hirsh-Pasek, K., Newcombe, N., & Golinkoff, R. M. (2013). Taking shape: Supporting preschoolers’ acquisition of geometric knowledge through guided play. Child Development, 84(6), 1872-1878.
    Forman, G. (1984). Constructive play with computers. Keynote address to the Oregon association for the education of young children, Porltand, OS: Oregon.
    Fox, J. E. (1997). Swinging: What young children begin to learn about physics during outdoor play. Journal of Elementary Science Education, 9(1), 1–14.
    Freitas, E. &Palmer, A. (2016). How scientific concepts come to matter in early childhood curriculum: Rethinking the concept of force. Culture Student of Science Education, 11, 1201-1222.
    Frost, J. L., Worham, S. C., & Reifel, S. (2008). Play and Child Development (3th ed.). New Jersey, NJ: Pearson Education.
    Geiken, R., Uhlenberg, J., & Yoshizawa, S. (2016). Implementing ramps and pathways in the classroom. In Counsell, S., Escalada, L., Geiken, R., Sander, M., Uhlenberg, J., Van Meeteren, B., Yoshizawa, S., & Zan, B. (2016). STEM Leaning with young children: inquiry teaching with ramps and pathways. London,LD: Columbia University.
    Gold, Z. S. , Elicker, J. , Howe, N., Bergeron, C., Fuoco, J., Longo, M., Lehmann, K.,& Infantino, E. (2019). The effects of Rigamajig play materials on elementary children’s early development, learning, andinterest in STEM. Retrieved from Purdue University, Department of Human Development and Family Studies. West Lafayette, Indiana.
    Gold, Z. S., Elicker, J., Choi, J. Y., Anderson, T., & Brophy, S. P. (2015). Preschoolers’ engineering play behaviors: differences in gender and play context. Children, Youth and Environments,25(3),1-21.
    Goodfader, R.A. (1982). Gender differences in the play constructions of preschool children. Smith College Studies in Social Work,52, 129-144.
    Gross, C. M. (2012). Science concepts young children learn through water play. Dimensions of Early Childhood, 40(2), 3–11.
    Gunstone, R.&Watts, M. (1985). Force and motion. In Driver, R., Guesne, E. &Tiberghien, A. (1985). Children’s ideas in science. Philadelphia, PA: Open university press.
    Hadzigeorgiou,Y.(2001). The role of wonder and “romance” in early childhood science education. International Journal of Early Years Education,9,63-69.
    Hadzigeorgiou, Y. (2002). A study of the development of the concept of mechanical stability in preschool children.Research in Science Education, 32(3), 373–391.
    Hadzigeorgiou, Y., Anastasiou, L., Prevezanou, B., & Konsolas, M. (2009). A Study of the effect of preschool children’s participation in sensorimotor activities on their understanding of the mechanical equilibrium of a balance beam. Research in Science Education, 39, 39-55.
    HallstrÖm, J., Elvstrand, H., & Hellberg, K. (2015). Gender and technology in free play in Swedish early childhood education. International Journal of Technology and Design Education, 25(2), 137-149.
    Hansel, R. R. (2015). Bringing blocks back to the kindergarten classroom. Young Children, 3, 44-51.
    Hewitt, K. (2001). Blocks as a tool for learning: Historical and contemporary perspectives. Young Children, 1, 6-13.
    Hirsch, E. (1984). The block book. Washington, DC: National association for the education of young children.
    Honomichl, R., & Chen, Z.(2012). The role of guidance in children’s discovery learning. Cognitive Science,3(6), 615-619.
    Ioannides, C.&Vosniadou, S. (2002). The changing meanings of force. Cognitive Science Quarterly,2, 5-61.
    Johnson, H. (1982). The act of block building. New York, NY: Bank Street college publications.
    Kamii, C. (2014). Physcical–knowledge activities: Play before the differentiation of knowledge into subjects. Early Education and Day Care,17,57-72.
    Kamii, C. (2016). Can adults teach number concepts to young children. Childcare Exchange, 1,59-62.
    Kamii, C.,&Lee-Katz, L. (1982). Physics in preschool education:A piagetian approach.In Brown, J.G.(ed.). Curriculum planning for young children (pp.171-176).Washington,DC:National association for the education of young children.
    Kamii, C., Miyakawa, Y.,&Kato, Y. (2004). The development of logico-mathematical knowledgein a block-building activity at ages 1-4. Journal of Research in Childhood Education, 19(1),44-57.
    Kilbrink, N., Bjurulf, V., Blomberg, I., Heidkamp, A.,&Hollsten, A-C. (2014). Learning specific content in technology education:learning study as a collaborative method in Swedish preschool class using hands-on material. International Journal of Technology and Design Education,4(3), 241-259.
    Kym, S., Alexandre, F., Elisapesi, M., Joros, S., Malinda, P.,&Clare, K. (2020). The impact of block play on children’s early mathematics skills in Rural Papua New Guinea. International Journal of Early Childhood,52(1),77-93.
    LeCompte, M. D., Preissle, J.,&Tesch, R. (1993). Ethnography and qualitative research (2nd ed.). Newbury Park. CA: Sage.
    Lee, J., Collins, D. A., & Winkelman, L. (2015). Connecting 2-D and 3-D:drafting blueprints, building, and playing with blocks. Young Children, 3, 32-35.
    Lincoln,Y. S.,&Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.
    Lindeman, K. W., & Anderson, E. M. (2015). Using blocks to develop 21st century skills. Young Children, 3, 36-43.
    Marxen, C. (1995). Push, Pull, Toss, Tilt, Swing: Physics for Young Children. Young Children, 71, 212-216.
    Metz, K. E. (1993). Preschoolers’ developing knowledge of the Pan Balance: From new representation to transformed problem solving. Cognition and Instruction, 11(1), 31-93.
    Miyakawa, Y. Kamii, C., & Nagahiro, M. (2005). The development of Logico-mathematical thinking at ages 1-3 in play with blocks and an incline. Journal of Research in Childhood Education, 19(4), 292-301.
    Mylesand, M.(2007). Bygg och konstruktion i förskolan. Malmö: Lärarförbundets förlag..
    Nicolopoulou, A. (1991). Constructive play: a window into the mind ofthe preschooler. In Scales, B., Almy, M., Nicolopoulou, A.,& Ervin-Tripp, S. (Ed.), Play and the social context of development inearly care and education (pp.173-191). New York, NY: Teachers CollegePress.
    Ozaki, K., Yamamoto, N., & Kamii, C. (2008). What do children learn by trying to produce theDomino effect? Young Children, 63(5), 58–64.
    Park, B., Chae, J. L., & Boyd, B. F. (2008). Young children’s block play and mathematical learning. Journal of Research in Childhood Education, 23(2), 157-162.
    Park, J. (2019). The qualities criteria of constructive play and the teacher’s role. The Turkish Online Journal of Educational Technology, 18(1), 126-132.
    Piaget, J. (1970). Genetic epistemology. New York, NY: Columbia university press.
    Piaget, J. (1971). Biology and knowledge. Chicago,IL:University of Chicago Press. Original work published 1967.
    Piaget, J. (1962). Play, dreams, and imitation in childhood. New York, NY: Norton.
    Piaget,J.(1969).The child’s conception of time. London:Routledge and Kegan Paul.
    Piaget, J.(1930). The child’s conception of physical causality. London, LDN: Routledge, Paul K.
    Piaget, J. (1974). The Child’s Conception of Movement and Speed. London,LD: Routledge and Kegan Paul.
    Ramani, G. B., Zippert, E., & Schweitzer, S. Pan, S. (2014). Preschool children’s joint block building during a guided play activity. Journal of Applied Developmental Psychology, 35(4), 326-336.
    Reifel.S.(1984).Symbolic representation at two ages:Block buildings of a story. Discourse Processes,7,11-20.
    Sackes, M., Trundle, K.C., Shaheen, M. (2019). The Effect of Balanced Learning. Curriculum on Young Children’s Learning of Science, 10,1082-3301.
    Sarama, J. & Clements, D. H. (2003). Building blocks of early childhood mathematics. Teaching Children Mathematics, 9(8),480-484.
    Schmidt, H., Burts, D. C., Durham, R. S., Charlesworth, R.,& Hart, C. H. (2007). Impact of the developmental appropriateness of teacher guidance strategies on kindergarten children’s interpersonal relations.Journal of Research in Childhood Education, 21(3),290-301.
    Schwartz, D. L., Martin, T.,  Pfaffman, J. (2005). How mathematics propels the development of physical knowledge. Cognition Development, 6(1), 65 –88.
    Solis, S. L., Curtis,K.N., & Hayes-Messinger, A. (2017). Children’s Exploration of Physical Phenomena During Object Play. Journal of Research in Childhood Education, 31(1), 122-140.
    Strawhacker, A., Sullivan, A., & Portsmore, M. (2016). Billund builds music: an engineering education initiative in Danish kindergartens. IEEE Integrated STEM Education Conference.257-261.
    Sullivan, A., Elkin, M.,&Bers, M.U. (2015). KIBO Robot Demo: Engaging young children in programming and engineering. In Proceedings of The 14th International Conference on Interaction Design and Children, 14, 418-421.
    Sullivant, A., Strawhacker, A., &Bers, M. U. (2017). Dancing, drawing, and dramatic robots: Integrating Robotics and the arts to teach foundational STEAM concepts to young children. In Khine, M.S.(Eds.). Robotics in STEM education: Redesigning the learning experience.(pp.231-260). Springer Publishing.
    Tepylo, D. H., Moss, J., & Stephenson, C. (2015). A developmental look at a rigorous block play program. Young Children, 3, 18-25.
    Thomson, D., Casey, B. M., Lombardi, C. M.,& Nguyen, H. N. (2018). Quality of fathers’ spatial concept support during block building predicts their daughters’ early math skill-but not their sons’. Early Childhood Research Quarterly, 50, 51-64.
    Tobin, J., Hsueh, Y.,&Karasawa, M. (2009). Preschool in three cultures revisited: China, Japan, and the United States. Chicago, IL: The University of Chicago.
    Trawick-Smith, J.&Dziurgot, T. (2010). Untangling teacher-child play interactions: Do teacher education and experience influence “good-fit” responses to children’s play? Journal of Early Childhood Teacher Education, 31, 106-128.
    Trawick-Smith, J., Swaminathan, S., Baton, B., Danieluk, C., Marsh, S., and Szarwacki, M. (2017). Block play and mathematics learning in preschool: the effects of building complexity, peer and teacher interactions in the block area, and replica play materials. J. Early Child. Res. 15, 433–448.
    Walan, S., Flognman, J. & Kilbrink, N. (2019). Building with focus on stability and construction: Using a story as inspiration when teaching technology and design in preschool.International Journal’ of Primary, Elementary and Early Years Education, 48,174-190.
    Weisberg, D. S., Hirsh-Pasek, K., & Golinkoff, R. M. (2013). Guided play: Where curricular goals meet a playful pedagogy. Mind, Brain, and Education, 7(2), 104–112.
    Weisberg, D. S., Zosh, J. M.(2018). How Guided Play Promotes Early Childhood Learning. Encyclopedia on Early Childhoo Development.
    [online].http://www.child-encyclopedia.com/play-based-learning/according-experts/how-guided-play-promotes-early-childhood-learning.
    Wilkening, F., & Cacchione, T. (2010). Children’s intuitive physics. In U. Goswami (Ed.). The Wiley-Blackwellhandbook of childhood cognitive development (pp. 473–496). Malden, MA: Wiley-Blackwell.
    Wellhousen, K.&Kieff, J. E. (2000). A constructivist approach to block play in early childhood. New York, NY: Thomson Delmar Learning.
    Winsor, C. B. (1984). Blocks as a material for learning through play: The contribution of Caroline Pratt. In Hirsch, E.S. (Ed.). The block book(pp.2-7). Washington, DC: NAEYC.
    Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173-180.
    Wood, D., Bruner, J. S.,&Ross, G. (1976). The role of tutoring in problem solving. Journal Child Psychology and Psychiatry, 17, 89-100.
    Vosniadou, S. (2002). On the nature of naïve physics. In M. Limón & L. Mason (Eds.), Reconsidering conceptualchange: Issues in theory and practice(pp. 61–76). New York, NY: Kluwer Academic Publishers.
    Vygotsky, L.S. (1978). Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard university press.
    Zan, B. (2016). Why STEM? Why early childhood? Why now? In Counsell, S. L., Escalada, R., Geiken, M., Sander, J., Uhlenberg, B.V., Meeteren, S.Y.&Zan, B. (Eds.),STEM Learning with young children:inquiry teaching with ramps and pathways(pp.1-9).New York, NY: Teacher college press.

    下載圖示
    QR CODE