研究生: |
林廷威 LIN, Ting-Wei |
---|---|
論文名稱: |
化學氣相沉積法製作鈣鈦礦共振型發光二極體之特性研究 Chemical Vapor Deposition of Perovskite Resonant Cavity Light Emitting Diodes Characteristic Research |
指導教授: |
李亞儒
Lee, Ya-Ju |
口試委員: | 張俊傑 楊斯博 李亞儒 |
口試日期: | 2021/08/23 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 高溫爐管製程 、鈣鈦礦 、高反射鏡 、共振腔發光二極體 |
英文關鍵詞: | CsPbBr3 |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101271 |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一項有別於過去常用的化學方式備製鈣鈦礦薄膜的製程方法,改善化學溶液環境汙染的困局。利用化學氣相沉積法(Chemical Vapor Deposition)在ITO基板成長無機鈣鈦礦材料CsPbBr3薄膜,達成無使用化學溶液的製程。藉由成長溫度、壓力、流量的調控研究,在1.5 cm *1.5 cm 玻璃基板放置距離粉末下游13.5 cm,使用單熱源加熱包650 ℃下通氮氣流量50 sccm壓力在600 Torr下可成長出微米等級的鈣鈦礦材料薄膜。本研究也成功開發出運用化學氣相沉積法成長在ITO基板之大面積鈣鈦礦材料CsPbBr3薄膜。
再結合我們採用二種一者為下反射鏡布拉格反射鏡(Distributed Bragg Reflectors; DBRs)另一者為金屬鏡面最為上反射鏡,目前大部分的鈣鈦礦發光二極體之電子傳輸層與電洞傳輸層,仍使用有機材料,這些材料除了環境耐候性差以及價格昂貴之外,不論在製造還是丟棄時,對環境都有很大的污染性,為了改善這個問題,本研究採用低環境汙染、價格便宜且耐候性佳之氧化鋅(ZnO)傳輸層形成微共振腔發光二極體;討論有無DBR之發光強度與半高寬之差別。
This study proposes a process method that is different from the usual chemical methods used in the past to prepare perovskite films to improve the solubility of chemical solution precursors and the dilemma of environmental pollution. Using Chemical Vapor Deposition (Chemical Vapor Deposition) to grow the inorganic perovskite material CsPbBr3 thin film on the ITO substrate to achieve a process without the use of chemical solutions. Through the research on the regulation of growth temperature, pressure and flow rate, the 1.5 cm * 1.5 cm glass substrate is placed 13.5 cm downstream of the powder, and the argon (Ar) flow rate is 50 sccm and the pressure is 600 Torr at 650 ℃ using a single heat source heating package. A thin film of micron-level perovskite material is grown. This research has also successfully developed a large-area perovskite material CsPbBr3 thin film grown on an ITO substrate using chemical vapor deposition. In combination, we use two types: DBR(Distributed Bragg Reflectors; DBRs) and the other is the metal mirror as the top reflector. At present, most of the perovskite light-emitting diodes have electron transport layers and electrical The hole transport layer still uses organic materials. In addition to the poor weather resistance and high price, these materials have great pollution to the environment whether they are manufactured or discarded. In order to improve this problem, this study adopts low environmental pollution, The zinc oxide (ZnO) transport layer, which is inexpensive and has good weather resistance, forms a micro-cavity light-emitting diode; discuss the difference between the luminous intensity and the FWHM of DBR.
[1] Wenk, Hans-Rudolf; Bulakh, Andrei (2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7
[2] Ashoori, R. C. (1996). "Electrons in artificial atoms". Nature. Bibcode:1996. doi:10.1038/379413a0
[3] Kastner, M. A. (1993). "Artificial Atoms". Physics Today. Bibcode:1993. doi:10.1063/1.881393.
[4] Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. doi: 10.1039/C6CE02314B
[5] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "photochemistry".
[6] Sheppard, C.J.R. (1995). "Approximate calculation of the reflection coefficient from a stratified medium". doi:10.1088/0963-9659/4/5/018.
[7] Osting, B. (2012). "Bragg structure and the first spectral gap". Applied Mathematics Letters. 25 (11): 1926–1930. doi:10.1016/j.aml.2012.03.002.
[8] Sudipta Seth , Anunay Samanta , “A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition , ” Scientific Reports , DOI: 10.1038/srep37693 (2016)
[9] A. Feldhoff , M. Arnold , J. Martynczuk ,“The solegel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions, ” Solid State Sciences, doi:10.1016/j (2008)
[10] Dan Wang , Dan Wu, Di Dong , Wei Chen, “Polarized emission from CsPbX3 perovskite quantum dots, ” Nanoscale , DOI: 10.1039/c6nr01915c(2016)
[11] R. M. PITICESCU , P. VILARNHO “Hydrothermal synthesis of perovskite based materials for microelectronic applications, ” Advanced materials ,Vol. 8, No. 2 (2006)
[12] Loredana Protesescu , Sergii Yakunin , Maryna I. Bodnarchuk, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, ” Nano Let , DOI: 10.1021/nl5048779 (2015)
[13] Bridgemanite on Mindat.org.
[14] 李正中。薄膜光學與鍍膜技術。第八版。藝軒圖書出版社。新北市。2016
[15] https://www.x-mol.com/news/13131
[16] http://news.sciencenet.cn/htmlpaper/201762713355319044352.shtm
[17] https://www.renishaw.com.tw/tw/photoluminescence-explained--25809
[18] Zheng, Haihua, et al. "Ultra-bright pure green perovskite light-emitting diodes." Applied Physics Letters 118.26 (2021): 262102.
[19] Roycroft, B., et al. "Experimental Characterisation of GaN‐Based Resonant Cavity Light Emitting Diodes." physica status solidi (a) 192.1 (2002): 97-102.
[20] Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., ... & Kovalenko, M. V. (2015). Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters, 15(6), 3692-3696.