簡易檢索 / 詳目顯示

研究生: 蔡陳杰
Tsai, Chen-Chieh
論文名稱: 以 Centernet 為基礎開發 AOI 輔助系統之研究
A Study of Centernet Based AOI Assistant System Development
指導教授: 黃文吉
Hwang, Wen-Jyi
口試委員: 張寶基
Chang, Pao-Chi
周賜福
Joesph Arul
口試日期: 2021/08/03
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 自動光學檢測元件檢測深度學習邊緣計算
英文關鍵詞: Centernet, Automated optical inspection, Component detection, Deep learning, Edge computing
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101299
論文種類: 學術論文
相關次數: 點閱:198下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自動光學檢測(AOI)為結合電腦視覺與自動化等多種技術的自動檢測方法,並且廣泛使用於產品製造的品質管理上,而元件檢測是自動光學檢測中的重要檢測項目之一。近年來,由於工業產業的變化,產品生產走向了少量多樣化,而在檢測上也改以邊緣運算的裝置運行,因此除了傳統元件檢測要求的準確率外,理想的元件檢測方法還必須要運算複雜度夠低與模型小才能在邊緣運算裝置上運行,而常見的元件檢測方法並不能完全達到這些要求。
    本論文使用Centernet作為新建立的AOI元件檢測系統的核心演算法。其優點為應用廣泛以及容易簡化與縮小模型,讓模型足夠輕量在工廠上的邊緣運算裝置上運行,且在通用物件檢測有良好的檢測效果。而本論文完成之元件檢測系統能夠快速偵測出元件,以及將其系統應用於嵌入式系統上,以達到工業上減少成本的需求,也可以應用在客製化的元件檢測上。

    第 1 章 緒論 1 1-1 研究背景 1 1-2 研究目的 7 1-3 研究貢獻 8 第 2 章 基本理論介紹 9 2-1 Anchor-based 9 2-2 Centernet 14 第 3 章 研究方法 18 3-1 訓練資料建立 19 3-2 Centernet模型與訓練 21 3-2-1 所採用之Centernet模型 21 3-2-2 關鍵點熱點圖與元件長寬標記 25 3-2-3 損失函數 27 3-3 模型輸出後處理 29 3-3-1 尋找關鍵點 29 3-3-2 組成邊界框 31 3-3-3 檢測目標大小之影響 32 3-4 檢測流程 33 第 4 章 實驗結果 35 4-1 檢測結果與其他檢測方法比較 39 4-2 有無使用Regularization的比較 44 4-3 在嵌入式系統上之測試 45 4-4 實際應用 46 第 5 章 結論 50 參考文獻 51

    [1] M. A. Mallaiyan Sathiaseelan, O. P. Paradis, S. Taheri, and N. Asadizanjani, "Why Is Deep Learning Challenging for Printed Circuit Board (PCB) Component Recognition and How Can We Address It?," Cryptography, vol. 5, no. 1, pp. 9, Mar. 2021.

    [2] A. J. Crispin and V. Rankov, "Automated inspection of PCB components using a genetic algorithm template-matching approach," Int. J. Adv. Manuf. Technol., vol. 35, pp. 293-300, 2007.

    [3] D. Li, C. Li, C. Chen, and Z. Zhao, "Semantic Segmentation of a Printed Circuit Board for Component Recognition Based on Depth Images," Sensors, vol. 20, no. 18, pp. 5318, Sep. 2020.

    [4] C. Yang, "Machine Learning and Computer Vision for PCB Verification," Dissertation, 2020.

    [5] S. Suzuki and K. Abe, "Topological structural analysis of digital binary images by border following," Comput. Vision Graphics Image Process., vol. 30, no. 1, pp. 32-46, 1985.

    [6] X. Zhou, D. Wang and P. Krähenbühl, "Objects as points," arXiv:1904.07850 [cs.CV], 2019.

    [7] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017.

    [8] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arxiv:1804.02767 [cs.CV], 2018.

    [9] Wenshuo Ma, Tingzhong Tian, Hang Xu, Yimin Huang and Zhenguo Li, "AABO: Adaptive Anchor Box Optimization for Object Detection via Bayesian Sub-sampling," arXiv:2007.09336 [cs.CV], 2020.

    [10] Hei Law and Jia Deng, "CornerNet: Detecting Objects as Paired Keypoints," arXiv:1808.01244 [cs.CV], 2018.

    [11] A. Newell, K. Yang, and J. Deng, "Stacked hourglass networks for human pose estimation," European conference on computer vision, pp. 483–499, 2016.

    [12] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

    [13] Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z,
    Song Y, Guadarrama S and Murphy K, "Speed/accuracy trade-offs for modern convolutional object detectors," CVPR, 2017.

    [14] Olaf Ronneberger, Philipp Fischer and Thomas Brox "U-Net: Convolutional Networks for Biomedical Image Segmentation," arXiv:1505.04597 [cs.CV], 2018.

    [15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal loss for dense object detection, " Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

    下載圖示
    QR CODE