研究生: |
謝翊萱 Yi-Shuan Hsieh |
---|---|
論文名稱: |
香菸致癌物透過AKT/GSK3β/βTrCP訊息路徑影響DNA甲基轉移酵素穩定性 Cigarette-Specific Carcinogen Induces Stabilization of DNA methyltransferases through AKT/GSK3β/βTrCP Pathway in Lung Cancer |
指導教授: |
王憶卿
Wang, Yi-Ching |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | NNK 、DNA甲基轉移酵素1 穩定性 、肺癌 、AKT/GSK3β/βTrCP訊息路徑 |
英文關鍵詞: | NNK, DNA methyltransferase 1 stability, lung cancer, AKT/GSK3β/βTrCP pathways |
論文種類: | 學術論文 |
相關次數: | 點閱:143 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景:台灣地區不論女性或男性肺癌皆高居癌症死亡率之首位,而肺癌的發生與長期暴露於環境中的致癌物質有關,尤其是香菸中的成份nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,簡稱NNK,被認為是造成肺癌主要的致癌物類型之一。NNK除了會導致DNA 的損害 (DNA damage) 外,近來研究也發現NNK 容易造成癌症形成過程中外顯基因變異 (epigenetic alteration),使抑癌基因的啟動子上被過度甲基化。而造成啟動子CpG 位置上過度甲基化的DNA 甲基轉移酵素 (DNA methyltransferase, DNMT)DNMT1、DNMT 3a 及DNMT 3b,目前也已發現在癌細胞中有過度表現的情形。
研究目的: 本實驗室先前針對肺癌做了許多與抑癌基因CpG 過度甲基化相關的研究,並發現DNMTs 的過度表達與抽煙的肺癌病人有顯著的相關性,然而造成此現象的詳細機制仍不清楚。因此本篇研究目的為以細胞、臨床及動物模式探討香菸致癌物NNK 是透過何種機制而誘導DNMTs 表達,進而導致許多抑癌基因啟動子CpG位置過度甲基化的現象。
研究方法及結果: 首先在細胞模式由西方轉漬法 (Western Blot)發現處理香菸中的尼古丁 (nicotine) 6 小時後,會促使DNMT1 蛋白表現增加;而由nicotine 所衍生出來的致癌物NNK 則是在隨其處理濃度及時間增加,DNMT1 蛋白表現也隨之增加,尤其在10 μM NNK處理2 小時即有很明顯誘導效果;同時藉由外送DNMT1 載體表現分析實驗也得知NNK 會誘導外生性DNMT1 蛋白表現增加;然而透過反轉錄聚合酵素鏈反應 (RT-PCR) 得知NNK 處理2 小時並不會影響DNMT1 mRNA 的表達改變。進一步,處理可以抑制新蛋白質生成的轉譯抑制劑Cycloheximide 得知DNMT1 蛋白的半衰期大約6小時,但是同時受到NNK 刺激後,DNMT1 蛋白的半衰期增長為24
小時。本研究結果亦顯示nicotine 及NNK 在2 小時內與p-NFκB、p-AKT、p-ERK1/2 及p-p38 的訊息蛋白活化有關;更進一步由處理AKT抑制劑 (LY294002) 及AKT knock down 實驗得知NNK會透過AKT 訊息路徑影響DNMT1 蛋白表現的增加。由免疫沈澱法(Immunoprecipitation)、蛋白質降解抑制劑 (MG132) 處理等實驗證明NNK透過AKT訊息路徑影響泛素 (ubiquitin) 調節的蛋白質體降解系統而增加DNMT1 蛋白的穩定性;此外,更進一步利用GSK3β抑制劑及分別外送GSK3β、βTrCP 載體表現來驗證GSK3β/βTrCP路徑會促使DNMT1 蛋白降解,但NNK 則會活化AKT 而影響
GSK3β/βTrCP 路徑使DNMT1 不易被降解。由免疫沈澱法也首度證實DNMT1 蛋白會與GSK3β 及 βTrCP 蛋白結合,由此可知GSK3β/βTrCP 蛋白降解路徑的確會影響DNMT1 蛋白調控。接下來我們以染色質沈澱的聚合酶鏈鎖反應(chromatinimmunoprecipitation-polymerase chain reaction assay) 及聚合酵素鏈反應為基礎的甲基化分析 (methylation-specific PCR) 方法發現NNK 所誘導的DNMTs 表現會結合至抑癌基因啟動子區域,進而造成抑癌基因啟動子有過度甲基化的情形。
在動物模式實驗中,以免疫組織染色分析NNK 處理及未處理的老鼠肺組織切片,發現NNK 處理後所產生肺腫瘤組織的DNMT1、DNMT3B、p-AKT 與不活化態的p-GSK3β(ser9)蛋白表現比較高,而βTrCP 蛋白則有下降表現的情形。
在臨床研究方面,我們以免疫組織染色分析(Immunohistochemistry)偵測109 位臨床肺癌病人DNA 甲基轉移酵素表現量,發現曾經吸煙但後來有戒煙病人的DNMT1 蛋白過度表現情形 (31.1%) 比持續吸煙病人的DNMT1 蛋白過度表現情形 (69.4%) 明顯來的低 (P 值=0.001)。
結論: 由以上細胞、臨床及動物模式實驗結果顯示,香菸中致癌物NNK 的確會誘導DNMTs 蛋白表現的增加;進一步由細胞實驗結果也知NNK 會透過AKT 訊息路徑削弱GSK3β/βTrCP 調控DNMT1 蛋白降解作用,進而使DNMT1 蛋白質穩定性增加;而這些NNK 所誘導的DNMTs 蛋白也會結合到抑癌基因的啟動子位置上,進而導致抑癌基因啟動子產生過度甲基化的情形,因此成為導致肺癌發生的原因之一。
Background: Most lung cancer cases are caused by cigarette-specific carcinogens, such as nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Previous studies have shown that NNK induces promoter hypermethylation of several tumor suppressor genes (TSGs) in mouse models. However, the mechanism involved in the
promoter hypermethylation induced by NNK remains unclear. DNA methylation is carried out by DNA methyltransferases (DNMTs), which have been shown to be overexpressed in human cancers including lung cancer.
Purpose: Our previous study showed that smoking lung cancer patients have a significant high level of DNMTs expression. Therefore, the present study aims to investigate what mechanisms involved in DNMTs overexpression induced by a cigarette carcinogen, NNK, in
lung cancer by cell, animal, and clinical models.
Results: Western blot assays indicated that DNMT1 and DNMT3b increased after treated with pro-carcinogen, nicotine for 6 h in IMR90, A549, and H1299 lung cells. In addition, nicotine-derived carcinogen, NNK treatment for 2 h increased endogenous and exogenous DNMT1 protein levels but not mRNA expression level in A549 and H1299 lung
cells, suggesting that NNK-induced DNMT expression occurs at the post-translational level. Treatment with translation inhibitor cycloheximide with or without combining treatment of NNK confirmed that NNK indeed prolonged DNMT1 protein half-life. In addition, NNKactivated phosphorylation of AKT, NFκB, ERK1/2, and p38 pathways in IMR90 and A549 cells. Note that AKT pathway was significantly
stimulated by NNK between 15 and 120 min in these cells. To evaluate the involvement of AKT signaling pathway in DNMT1 protein accumulation after NNK treatment, cells were treated with AKT inhibitor, LY294002, or AKT siRNA knock down oligos. The results indicated that NNK increased DNMT1 protein level can be abolished by both AKT inhibition treatments. In addition, immunoprecipitation assay suggested that NNK increased DNMT1 protein stability through AKT signaling pathway and was associated with ubiquitination protein degradation system. This conclusion was validated by combining treatment of AKT inhibitor and proteasome inhibitor MG132 in A549 and IMR90, which abolished the DNMT1 degradation induced by AKT inhibitor.
Since AKT downstream GSK3β/βTrCP ubiqutin-proteasome
pathway has been implicated in degradation of many proteins. We investigated whether GSK3β/βTrCP ubiqutin-proteasome pathway was involved in NNK-induced DNMT1 protein stability. We treated the cells with GSK3β inhibitor, SB415286, in the presence of NNK. In addition,
cells overexpressing different levels of GSK3β or βTrCP construct were analyzed for DNMT1 protein level. The data indicated that NNK induced DNMT1 protein stability resulted from attenuation of GSK3β/βTrCP-mediated DNMT1 protein degradation system. In addition, we found that DNMT1 protein interacted with GSK3β and βTrCP by
immunoprecipitation assay. Furthermore, chromatin-immunoprecipitationPCR and methylation-specific PCR assays showed that increased DNMT1 indeed bound to methylated TSG promoters after treated with NNK.
In animal model data, immunohistochemical staining assay showed that NNK increased protein expression level of DNMT1, DNMT3B, p-AKT, and inactive form of p-GSK3β (ser9) in mice adenoma lung tissue treated with NNK. However, protein expression level of βTrCP was reduced in NNK-treated mice adenoma lung tissue.
In clinical data, immunohistochemical staining for the DNMT1 protein expression was performed on 109 NSCLC tumor samples with smoking status data available. The results indicated that DNMT1 protein expression level was significantly higher in smoking patients compared to non-smoking patients including ex-smokers and never smokers
(P<0.001). Interestingly, the DNMT1 protein of ex-smoke patients were expressed at a significantly lower level in tumor nuclear compared to that found in still-smoking patients (P=0.001).
Conclusion: These data suggest that deregulation of DNMTs is associated with the NNK-induced DNMT stability by
AKT/GSK3β/βTrCP pathway and results in epigenetic alteration of target TSGs and ultimately leads to lung cancer.
Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16, 3797-3804.
Agoston, A.T., Argani, P., De Marzo, A.M., Hicks, J.L., and Nelson, W.G. (2007). Retinoblastoma pathway dysregulation causes DNA methyltransferase 1 overexpression in cancer via MAD2-mediated inhibition of the anaphase-promoting complex. Am J Pathol 170, 1585-1593.
Agoston, A.T., Argani, P., Yegnasubramanian, S., De Marzo, A.M., Ansari-Lari, M.A., Hicks, J.L., Davidson, N.E., and Nelson, W.G. (2005). Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J
Biol Chem 280, 18302-18310.
Askari, M.D., Tsao, M.S., and Schuller, H.M. (2005). The tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone stimulates proliferation of immortalized human pancreatic duct epithelia through
beta-adrenergic transactivation of EGF receptors. J Cancer Res Clin Oncol 131, 639-648.
Bains, M.S. (1991). Surgical treatment of lung cancer. Chest 100, 826-837.
Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P., and Crabtree, G.R.(1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930-1934.
Belinsky, S.A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4, 707-717.
Belinsky, S.A., Nikula, K.J., Baylin, S.B., and Issa, J.P. (1996). Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci U S A 93, 4045-4050.
Callebaut, I., Courvalin, J.C., and Mornon, J.P. (1999). The BAH(bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446, 189-193.
Carlisle, D.L., Liu, X., Hopkins, T.M., Swick, M.C., Dhir, R., and Siegfried, J.M.(2007). Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells.Pulm Pharmacol Ther 20, 629-641.
Cekanova, M., Majidy, M., Masi, T., Al-Wadei, H.A., and Schuller, H.M. (2007). Overexpressed Raf-1 and phosphorylated cyclic adenosine
3'-5'-monophosphatate response element-binding protein are early markers for lung adenocarcinoma. Cancer 109, 1164-1173.
Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA
methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99, 16916-16921.
Chen, J.T., Chen, Y.C., Chen, C.Y., and Wang, Y.C. (2001). Loss of p16 and/or pRb protein expression in NSCLC. An immunohistochemical and prognostic study. Lung Cancer 31, 163-170.
Chen, Z.X., Mann, J.R., Hsieh, C.L., Riggs, A.D., and Chedin, F. (2005). Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95, 902-917.
Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F. (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996-2000.
Cloutier, J.F., Drouin, R., Weinfeld, M., O'Connor, T.R., and Castonguay, A.(2001). Characterization and mapping of DNA damage induced by reactive metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at
nucleotide resolution in human genomic DNA. J Mol Biol 313, 539-557.
Cohen, P., and Goedert, M. (2004). GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3, 479-487.
Cole, A., Frame, S., and Cohen, P. (2004). Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 377, 249-255.
Collins, L.G., Haines, C., Perkel, R., and Enck, R.E. (2007). Lung cancer: diagnosis and management. Am Fam Physician 75, 56-63.
De Marzo, A.M., Marchi, V.L., Yang, E.S., Veeraswamy, R., Lin, X., and Nelson,W.G. (1999). Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res 59, 3855-3860.
Diehl, J.A., Cheng, M., Roussel, M.F., and Sherr, C.J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization.
Genes Dev 12, 3499-3511.
el-Deiry, W.S., Nelkin, B.D., Celano, P., Yen, R.W., Falco, J.P., Hamilton, S.R., and Baylin, S.B. (1991). High expression of the DNA methyltransferase gene
characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci U S A 88, 3470-3474.
Etoh, T., Kanai, Y., Ushijima, S., Nakagawa, T., Nakanishi, Y., Sasako, M., Kitano, S., and Hirohashi, S. (2004). Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor
differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 164, 689-699.
Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359, 1-16.
Girault, I., Tozlu, S., Lidereau, R., and Bieche, I. (2003). Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9, 4415-4422.
Goyal, R., Rathert, P., Laser, H., Gowher, H., and Jeltsch, A. (2007). Phosphorylation of serine-515 activates the Mammalian maintenance methyltransferase Dnmt1. Epigenetics 2, 155-160.
Grohmann, M., Spada, F., Schermelleh, L., Alenina, N., Bader, M., Cardoso, M.C., and Leonhardt, H. (2005). Restricted mobility of Dnmt1 in preimplantation embryos: implications for epigenetic reprogramming. BMC Dev Biol 5,18.
Hammons, G.J., Yan, Y., Lopatina, N.G., Jin, B., Wise, C., Blann, E.B., Poirier, L.A., Kadlubar, F.F., and Lyn-Cook, B.D. (1999). Increased expression of hepatic DNA metyltransferase in smokers. Cell Biol Toxicol 15, 389-394.
Hecht, S.S. (1999). DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res 424, 127-142.
Hecht, S.S. (2002). Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. The lancet oncology 3, 461-469.
Hermann, A., Gowher, H., and Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61, 2571-2587.
Hermann, A., Schmitt, S., and Jeltsch, A. (2003). The human Dnmt2 has
residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278,
31717-31721.
Hodge, D.R., Cho, E., Copeland, T.D., Guszczynski, T., Yang, E., Seth, A.K., and
Farrar, W.L. (2007). IL-6 enhances the nuclear translocation of DNA
cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear
localization sequence by the AKT kinase. Cancer Genomics Proteomics 4,
387-398.
Hoffmann, D., Hoffmann, I., and El-Bayoumy, K. (2001). The less harmful
cigarette: a controversial issue. a tribute to Ernst L. Wynder. Chem Res
Toxicol 14, 767-790.
Holmquist, G.P., and Gao, S. (1997). Somatic mutation theory, DNA repair rates,
and the molecular epidemiology of p53 mutations. Mutat Res 386, 69-101.
Hsu, H.S., Wang, Y.C., Tseng, R.C., Chang, J.W., Chen, J.T., Shih, C.M., and Chen, C.Y. (2004). 5' cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53
overexpression in resected non-small cell lung cancer. Clin Cancer Res 10, 4734-4741.
Hughes, K., Nikolakaki, E., Plyte, S.E., Totty, N.F., and Woodgett, J.R. (1993). Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. Embo J 12, 803-808.
Hutt, J.A., Vuillemenot, B.R., Barr, E.B., Grimes, M.J., Hahn, F.F., Hobbs, C.H., March, T.H., Gigliotti, A.P., Seilkop, S.K., Finch, G.L., et al. (2005). Life-span
inhalation exposure to mainstream cigarette smoke induces lung cancer in B6C3F1 mice through genetic and epigenetic pathways. Carcinogenesis 26, 1999-2009.
Issa, J.P., Vertino, P.M., Wu, J., Sazawal, S., Celano, P., Nelkin, B.D., Hamilton, S.R., and Baylin, S.B. (1993). Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85, 1235-1240.
Jeltsch, A., Nellen, W., and Lyko, F. (2006). Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 31, 306-308.
Jemal, A., Tiwari, R.C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., Feuer,E.J., and Thun, M.J. (2004). Cancer statistics, 2004. CA Cancer J Clin 54, 8-29.
Jin, Z., Gao, F., Flagg, T., and Deng, X. (2004a). Nicotine induces multi-site phosphorylation of Bad in association with suppression of apoptosis. J Biol Chem 279, 23837-23844.
Jin, Z., Gao, F., Flagg, T., and Deng, X. (2004b). Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J Biol Chem 279, 40209-40219.
Kim, D.H., Kim, J.S., Ji, Y.I., Shim, Y.M., Kim, H., Han, J., and Park, J. (2003). Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer.
Cancer Res 63, 3743-3746.
Kim, D.H., Nelson, H.H., Wiencke, J.K., Zheng, S., Christiani, D.C., Wain, J.C., Mark, E.J., and Kelsey, K.T. (2001). p16(INK4a) and histology-specific
methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 61, 3419-3424.
Kim, H., Kwon, Y.M., Kim, J.S., Han, J., Shim, Y.M., Park, J., and Kim, D.H.(2006). Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer 107, 1042-1049.
Kim, J.S., Kim, H., Shim, Y.M., Han, J., Park, J., and Kim, D.H. (2004). Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis 25, 2165-2171.
Laag, E., Majidi, M., Cekanova, M., Masi, T., Takahashi, T., and Schuller, H.M.(2006). NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells.
Int J Cancer 119, 1547-1552.
Laird, P.W. (2005). Cancer epigenetics. Hum Mol Genet 14 Spec No 1, R65-76.
Lee, J.H., Voo, K.S., and Skalnik, D.G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. J Biol
Chem 276, 44669-44676.
Lin, R.K., Hsu, H.S., Chang, J.W., Chen, C.Y., Chen, J.T., and Wang, Y.C.(2007). Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung Cancer 55, 205-213.
Lin, T.S., Lee, H., Chen, R.A., Ho, M.L., Lin, C.Y., Chen, Y.H., Tsai, Y.Y., Chou, M.C., and Cheng, Y.W. (2005). An association of DNMT3b protein expression with P16INK4a promoter hypermethylation in non-smoking female lung
cancer with human papillomavirus infection. Cancer Lett 226, 77-84.
Liu, H., Zhou, Y., Boggs, S.E., Belinsky, S.A., and Liu, J. (2007). Cigarette smoke induces demethylation of prometastatic oncogene synuclein-gamma in lung cancer cells by downregulation of DNMT3B. Oncogene 26, 5900-5910.
Liu, L.L., Alaoui-Jamali, M.A., el Alami, N., and Castonguay, A. (1990). Metabolism and DNA single strand breaks induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its analogues in primary culture of rat hepatocytes. Cancer Res 50, 1810-1816.
Liu, Y., Oakeley, E.J., Sun, L., and Jost, J.P. (1998). Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res 26, 1038-1045.
Lockwood, W.W., Chari, R., Coe, B.P., Girard, L., Macaulay, C., Lam, S., Gazdar, A.F., Minna, J.D., and Lam, W.L. (2008). DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers.
Oncogene. (Epub ahead of print)
Markou, T., Cullingford, T.E., Giraldo, A., Weiss, S.C., Alsafi, A., Fuller, S.J., Clerk, A., and Sugden, P.H. (2008). Glycogen synthase kinases 3alpha and 3beta in cardiac myocytes: regulation and consequences of their inhibition. Cell Signal 20, 206-218.
Marsit, C.J., Karagas, M.R., Danaee, H., Liu, M., Andrew, A., Schned, A., Nelson, H.H., and Kelsey, K.T. (2006). Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27, 112-116.
Momparler, R.L. (2003). Cancer epigenetics. Oncogene 22, 6479-6483. Mountain, C.F. (1997). Revisions in the International System for Staging Lung Cancer. Chest 111, 1710-1717.
Muscat, J.E., Djordjevic, M.V., Colosimo, S., Stellman, S.D., and Richie, J.P., Jr.
(2005). Racial differences in exposure and glucuronidation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK). Cancer 103, 1420-1426.
Nakagawa, T., Kanai, Y., Saito, Y., Kitamura, T., Kakizoe, T., and Hirohashi, S.(2003). Increased DNA methyltransferase 1 protein expression in human
transitional cell carcinoma of the bladder. J Urol 170, 2463-2466.
Nephew, K.P., and Huang, T.H. (2003). Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 190, 125-133.
Oka, M., Meacham, A.M., Hamazaki, T., Rodic, N., Chang, L.J., and Terada, N.(2005). De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2'-deoxycytidine. Oncogene 24,3091-3099.
Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
Okano, M., Xie, S., and Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19, 219-220.
Pap, M., and Cooper, G.M. (2002). Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22, 578-586.
Patra, S.K., Patra, A., Zhao, H., and Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33, 163-171.
Pulling, L.C., Klinge, D.M., and Belinsky, S.A. (2001). p16INK4a and beta-catenin alterations in rat liver tumors induced by NNK. Carcinogenesis 22, 461-466.
Pulling, L.C., Vuillemenot, B.R., Hutt, J.A., Devereux, T.R., and Belinsky, S.A.(2004). Aberrant promoter hypermethylation of the death-associated protein
kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 64, 3844-3848.
Robertson, K.D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139-3155.
Rossig, L., Badorff, C., Holzmann, Y., Zeiher, A.M., and Dimmeler, S. (2002). Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem 277, 9684-9689.
Saito, Y., Kanai, Y., Nakagawa, T., Sakamoto, M., Saito, H., Ishii, H., and Hirohashi, S. (2003). Increased protein expression of DNA methyltransferase(DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 105, 527-532.
Saito, Y., Kanai, Y., Sakamoto, M., Saito, H., Ishii, H., and Hirohashi, S. (2001). Expression of mRNA for DNA methyltransferases and methyl-CpG-binding
proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 33, 561-568.
Salomon-Nguyen, F., Della-Valle, V., Mauchauffe, M., Busson-Le Coniat, M., Ghysdael, J., Berger, R., and Bernard, O.A. (2000). The t(1;12)(q21;p13) translocation of human acute myeloblastic leukemia results in a TEL-ARNT fusion. Proc Natl Acad Sci U S A 97, 6757-6762.
Sanchez, J.F., Sniderhan, L.F., Williamson, A.L., Fan, S., Chakraborty-Sett, S., and Maggirwar, S.B. (2003). Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor
kappaB signaling. Mol Cell Biol 23, 4649-4662.
Schuller, H.M., and Cekanova, M. (2005). NNK-induced hamster lung adenocarcinomas over-express beta2-adrenergic and EGFR signaling pathways. Lung Cancer 49, 35-45.
Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., and Nevins, J.R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14, 2501-2514.
Sekido, Y., Fong, K.M., and Minna, J.D. (1998). Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1378, F21-59.
Shim, M., and Smart, R.C. (2003). Lithium stabilizes the
CCAAT/enhancer-binding protein alpha (C/EBPalpha) through a glycogen synthase kinase 3 (GSK3)-independent pathway involving direct inhibition of proteasomal activity. J Biol Chem 278, 19674-19681.
Siedlecki, P., and Zielenkiewicz, P. (2006). Mammalian DNA methyltransferases. Acta Biochim Pol 53, 245-256.
Singer, B. (1996). DNA damage: chemistry, repair, and mutagenic potential.
Regul Toxicol Pharmacol 23, 2-13.
Spira, A., and Ettinger, D.S. (2004). Multidisciplinary management of lung
cancer. N Engl J Med 350, 379-392.
Sun, L., Zhao, H., Xu, Z., Liu, Q., Liang, Y., Wang, L., Cai, X., Zhang, L., Hu,
L., Wang, G., et al. (2007). Phosphatidylinositol 3-kinase/protein kinase B
pathway stabilizes DNA methyltransferase I protein and maintains DNA
methylation. Cell Signal 19, 2255-2263.
Taketo, M.M. (2004). Shutting down Wnt signal-activated cancer. Nat Genet 36,
320-322.
Tammemagi, C.M., Neslund-Dudas, C., Simoff, M., and Kvale, P. (2004). Smoking and lung cancer survival: the role of comorbidity and treatment. Chest 125, 27-37.
Thomas, R.K., Baker, A.C., Debiasi, R.M., Winckler, W., Laframboise, T., Lin, W.M., Wang, M., Feng, W., Zander, T., MacConaill, L., Lee, J.C., Nicoletti, R., Hatton, C., Goyette, M., Girard, L., Majmudar, K., Ziaugra, L., Wong,
K.K., Gabriel, S., Beroukhim, R., Peyton, M., Barretina, J., Dutt, A., Emery, C., Greulich, H., Shah, K., Sasaki, H., Gazdar, A., Minna, J., Armstrong, S.A., Mellinghoff, I.K., Hodi, F.S., Dranoff, G., Mischel, P.S., Cloughesy, T.F., Nelson, S.F., Liau, L.M., Mertz, K., Rubin, M.A., Moch, H., Loda, M., Catalona, W., Fletcher, J., Signoretti, S., Kaye, F., Anderson, K.C., Demetri, G.D., Dummer, R., Wagner, S., Herlyn, M., Sellers, W.R., Meyerson, M., and
Garraway, L.A. (2007). High-throughput oncogene mutation profiling in human cancer. Nat Genet 39, 347-351.
Tsurutani, J., Castillo, S.S., Brognard, J., Granville, C.A., Zhang, C., Gills, J.J., Sayyah, J., and Dennis, P.A. (2005). Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung
cancer cells. Carcinogenesis 26, 1182-1195.
Tzao, C., Tsai, H.Y., Chen, J.T., Chen, C.Y., and Wang, Y.C. (2004a). 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur
J Cancer 40, 2175-2183.
Tzao, C., Tsai, H.Y., Chen, J.T., Chen, C.Y., and Wang, Y.C. (2004b). 5'CpG island hypermethylation and aberrant transcript splicing both contribute tothe inactivation of the FHIT gene in resected non-small cell lung cancer. Eur
J Cancer 40, 2175-2183.
Vuillemenot, B.R., Hutt, J.A., and Belinsky, S.A. (2006). Gene promoter hypermethylation in mouse lung tumors. Mol Cancer Res 4, 267-273.
Wang, Y.C., Hsu, H.S., Chen, T.P., and Chen, J.T. (2006). Molecular diagnostic markers for lung cancer in sputum and plasma. Ann N Y Acad Sci 1075, 179-184.
Wang, Y.C., Lu, Y.P., Tseng, R.C., Lin, R.K., Chang, J.W., Chen, J.T., Shih, C.M., and Chen, C.Y. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 111, 887-895.
West, K.A., Brognard, J., Clark, A.S., Linnoila, I.R., Yang, X., Swain, S.M., Harris, C., Belinsky, S., and Dennis, P.A. (2003). Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal
human airway epithelial cells. J Clin Invest 111, 81-90.
Xiao, Y., Word, B., Starlard-Davenport, A., Haefele, A., Lyn-Cook, B.D., and Hammons, G. (2008). Age and gender affect DNMT3a and DNMT3b expression in human liver. Cell Biol Toxicol 24, 265-272.
Xiong, Y., Dowdy, S.C., Podratz, K.C., Jin, F., Attewell, J.R., Eberhardt, N.L., and Jiang, S.W. (2005). Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo
DNA methyltransferase activity in human endometrial cells. Cancer Res 65, 2684-2689.
Zimmermann, C., Guhl, E., and Graessmann, A. (1997). Mouse DNA methyltransferase (MTase) deletion mutants that retain the catalytic domain display neither de novo nor maintenance methylation activity in vivo. Biol
Chem 378, 393-405.
Zochbauer-Muller, S., Fong, K.M., Maitra, A., Lam, S., Geradts, J., Ashfaq, R., Virmani, A.K., Milchgrub, S., Gazdar, A.F., and Minna, J.D. (2001). 5' CpG island methylation of the FHIT gene is correlated with loss of gene
expression in lung and breast cancer. Cancer Res 61, 3581-3585.