簡易檢索 / 詳目顯示

研究生: 蔡蕙雅
Hui-Ya Tsai
論文名稱: 鐵薄膜與鉑基底間溫度相依的介面擴散行為
Temperature dependent interdiffusion behavior between Fe film and Pt(111) substrates
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 歐傑電子低能量電子繞射擴散
英文關鍵詞: AES, LEED, Pt, diffusion, Fe
論文種類: 學術論文
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用歐傑電子能譜術配合離子濺射,觀察隨離子濺射打掉表面原子系統表面的組成變化,分析1ML Fe/Pt(111)系統經升溫熱退火後鐵原子的擴散情形,並搭配理論估算鐵在合金各層的分布比例。
    觀察570K,700K,910K熱退火後的鐵原子擴散,經由歐傑縱深分析後發現鐵原子大部份分布在表面前兩層至第三層,其中700K與910K鐵原子與白金在表層混合均勻,同時配合理論估算得知700K熱退火後,鐵原子在第一層佔73%,在第二層佔23%;910K熱退火後鐵原子在第一層佔 70%,第二層佔21%,比例差異不大。
    1017K下的鐵原子則已經鑽入內層與白金均勻混合成類似塊材合金的結構。以理論估算得知鐵原子在每一層比例佔11%至15%,表示鐵原子往內層擴散並與白金混合均勻。

    The composition depth profiles of 1ML Fe film on Pt(111) substrate annealing to 570K, 700K, 910K,and 1017K were analyzed by Auger electron spectroscopy(AES). After annealing 1ML Fe film on Pt(111) substrate, the surface was sputtered and detected by AES sequentially until iron was not observed. The proportions of iron at different layers were determined through the formula of depth profiles.
    After annealing to 570K, 700K, and 910K, less iron atoms could diffuse to the third layer. Meanwhile, after annealing to 700K, the percentages of iron atoms are 73% and 23% at first and second layer, respectively. The percentages of iron atoms after annealing to 910K are 70% and 21% at first and second layer, respectively. It shows the percentages of Fe atoms are stable at annealing temperature 770K and 910K. It manifests that the percentages of Fe atoms are not only related to the annealing temperature but also affected by the stability of Fe-Pt alloys.
    As annealing to 1017K, iron atoms could diffuse to deeper than the third layer because of the broken of the stability of Fe-Pt alloys. Furthermore, the percentages of iron atoms at each layer above the fourth layer range between 11% and 15%. It presumes that Fe-Pt alloy iron atoms were well-mixed vertically at each layer.

    Chapter1 緒論……………..……………………………………………1 Chapter2 儀器設備與工作原理……………………..…………………6 2-1 樣品的清潔與製備………………………….………………………6 2-1-1 超高真空系統………………………………………………6 2-1-2 抽超高真空系統的理由……………………………………9 2-1-3 抽氣設備…………………………………………………..10 2-1-4 達到超高真空系統的順序………………………………..12 2-1-5 樣品的清潔………………………………………………..14 2-1-6 樣品的升降溫系統………………………………………..14 2-1-7 樣品的蒸鍍裝置…………………………………………..16 2-2 歐傑電子能譜術…………………………………………………...17 2-2-1 歐傑效應與電子能譜……………………………………..17 2-2-2 歐傑電子能譜的應用……………………………………..20 2-2-3 同心半球能譜分析儀……………………………………..25 2-2-4 電子能譜的分析………………………………..…………28 2-3 歐傑縱深成份分析………………………………….…….……….30 2-3-1 離子濺射率………………………………………..………30 2-4 低能量電子繞射儀………………………………………………...32 2-4-1 倒晶格與電子繞射………………………………….…… 32 2-4-2 LEED的工作方式……………………………………...…37 2-4-3 LEED圖形所傳達的表面訊息……………..…………….39 2-4-4 I-V LEED …………………………………………………42 Chapter3 實驗結果與討論……………………………………………44 3-1 樣品的準備…………………………………………...……………44 3-1-1 樣品的清潔………………………..………………………44 3-1-2 鐵鍍源的刻度……………………………..………………45 3-2 利用AES探討鐵在Pt(111)上的成長…………………………..…46 3-3 以AES觀測1MLFe/Pt(111)隨溫度變化的情形…………………47 3-4 進行歐傑縱深分析的前置工作………………………...................49 3-4-1 製備合金樣品與實驗過程......……………………………49 3-4-2 刻度離子濺射率……………………………………….….50 3-5 1ML Fe/Pt(111)在不同溫度熱退火的實驗結果………………..51 • 300K熱退火的AES depth profile…………………….………51 • 570K熱退火的AES depth profile……………………...……..52 • 700K熱退火的AES depth profile……………………...……..53 3-5-1 比較570K與700K的Fe651eV訊號趨勢…………..……54 • 910K熱退火的AES depth profile……………………….…....55 3-5-2 比較570K,700K,910K的Fe651eV訊號趨勢 …………56 • 1017K熱退火的AES depth profile……………………..…….57 3-5-3 綜合比較…………………………………………..………58 3-6以離子濺射對訊號強度關係估算各層原子比例…………………60 3-7 由LEED觀察離子濺射前後的表面重構變化……………...……66 3-7-1分析820K下的LEED (2×2)繞射圖形………………...……66 3-7-2 由LEED繞射圖形分析離子濺射前後的結構……….……68 Chapter4結論…………………………………….……………………71 參考資料………………………………………………………………..73

    [1] D. I. Jerdev and B. E. Koel, Surf. Sci. 513, L391 (2002)
    [2] P. Beccat, Y. Gauthier, R. Baudoing-Savois, and J. C. Bertolini, Surf. Sci. 238, 105 (1990)
    [3] G. Ertl, J. Küppers, “Low energy Electrons and Surface Chemistry”, 2nd endition (1985)
    [4] C. Argile and G. E. Rhead, Surf. Sci. Rep. 10, 277 (1989)
    [5] E. Bauer, Appl. Surf. Sci. 11-12, 479 (1982)
    [6] 蔡萍實,師大物理系碩士論文(1992)
    [7] B. Dodson, Phys. Rev. B36 , 6288(1987)
    [8] 許宏彰,師大物理系碩士論文(2007)
    [9] D. Briggs and M.P. Seah, “Practical Surface Analysis”, JohnWilley
    & Sons, (1984)
    [10] D. L. Walters and C. P. Bhalla, Phys. Rev, A3, 1919 (1971)
    [11] “Handbook of Auger Electron Spectroscopy” , Perkin-Elmer Inc.(1978)
    [12] Hans Luth, “Surface and Interfaces to Solids”
    ISBN:0-387-56840-9(p.137)
    [13] H. Li , S. C. Wu, D. Tian, Y.S. Li , J.Quinn and F. Jona, Phys. Rev. B 44, 1438 (1991)
    [14] Jean-Claude Bertolini, Applied Catalysis 191, 15 (2000)
    [15] J. S. Tsay and C. S. Shern, J. Appl. Phys. 80(7),(1 October 1996)
    [16] C. Kittel, “Introduction to Solid State Physics” (1991)
    [17] 徐國棟,師大物理系碩士論文(1992)
    [18] M. Zheng, J. Shen, P. Ohresser, Ch. V. Mohan, M. Klaua, J. Barthel and J. Kirschner, J. Appl. Phys. 85, 5060 (1999)
    [19] Gabor A. Somorjai,“Chemistry Two Dimensions Surface”1984, p.129
    [20] C. J.Powell, Surf. Sci, 299/300, 34(1994)
    [21] S Tanuma, C. J. Powell and D. R. Penn, Surf .Interface Anal.,20,
    77(1993)
    [22] 陳宿惠,師大物理系碩士論文( 1990 )
    [23] R. Hirschl, F. oise Delbecq, et.al. Phys. Rev. B 66, 155438 (2002)
    [24] F. Hellman, R.T. Tung , Phys. Rev. B 37 ,10786 (1988)

    下載圖示
    QR CODE