簡易檢索 / 詳目顯示

研究生: 陳彥如
Chen, Yen-Ju
論文名稱: 中高齡者行動支付接受與拒斥因子模式之發展與驗證
Development and validation of models of mobile payment acceptance and rejection factors for middle-aged and older adults
指導教授: 王雅鈴
Wang, Ya-Ling
口試委員: 林珊如
Lin, Sunny S. J.
林鴻洲
Lin, Hung-Chou
王雅鈴
Wang, Ya-Ling
口試日期: 2022/07/14
學位類別: 碩士
Master
系所名稱: 社會教育學系
Department of Adult and Continuing Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 104
中文關鍵詞: 行動支付中高齡者結構方程模式科技接受模式混合研究
英文關鍵詞: middle-aged and older adults, mobile payment, structural equation modeling, technology acceptance model, mixed-methods research
研究方法: 混合研究
DOI URL: http://doi.org/10.6345/NTNU202201615
論文種類: 學術論文
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今科技進步蓬勃發展,我國網際網路及智慧型手機普及化。支付型態也隨之改變,行動支付為人們帶來便利及個人化。因此,行動支付也成為目前支付方式的焦點。中高齡者使用資訊科技的目的不盡相同,若能掌握中高齡者使用資訊科技的意圖,將可提高中高齡者對科技的接納度及使用率,進而提高其生活品質。本研究旨在了解促進及抗性中高齡者使用行動支付之預測因子,本研究理論以使用態度與使用行為為基礎,以探究中高齡者使用行動支付之預測因子進行探討與驗證。本研究方法為混合設計,本研究共有兩個研究分別採用深度訪談法與問卷調查法,兩個研究之研究對象皆為45歲以上之中高齡者。研究一為深度訪談法,訪談20位受試者(50-77歲),探究中高齡者使用行動支付的接受與拒斥之因子,以建立後續量表及模式基礎。研究二為進行問卷調查法,研究二之研究工具有研究者自編的行動支付接受量表、行動支付拒斥量表以及Yang等人(2015)、Yeh(2020)與Oliveira等人(2016)的量表改編之行動支付行為量表,設計本研究之問卷後,將各量表透過以預試確立信效度後,正式施測以立意抽樣,包含紙本與網路問卷,共計回收386份有效問卷,再以結構方程模型(structural equation modeling, SEM)來驗證本研究所提出的行動支付接受與拒斥模型,以深入了解增進或阻礙中高齡者採用行動支付的因素。研究結果為不論是接受模式或是拒斥模式,在行動支付有用性與不有用性的部分,皆對使用態度有正向顯著之預測效果;在社會影響與缺乏社會影響皆對有用性與不有用性有正向顯著之預測效果;使用態度對使用行為皆有正向顯著之預測效果。(1)行動支付接受模式:僅行動支付易用性對使用態度有顯著正向之預測效果,而社會影響對行動支付易用性不具顯著之預測效果,且行動支付易用性對使用態度不具顯著之預測效果。(2)行動支付拒斥模式:缺乏社會影響、缺乏隱私保護、不易用性、不有用性皆對使用態度有顯著之預測效果,但不易用性對不有用性不具有顯著之預測效果。

    Nowadays, with the rapid development of science and technology, the Internet and smart phones are becoming popular in our country. Payment patterns have also changed, with mobile payments bringing convenience and personalization. Therefore, mobile payment has also become the focus of current payment methods. The purpose of using information technology among middle-aged and older adults is different. If we can grasp the intention of using information technology among middle-aged and older adults, it will improve the acceptance and utilization rate of technology among middle-aged and older adults, thereby improving their quality of life. The purpose of this study is to understand the predictors of promoting and resisting the use of action payment among middle-aged and older adults. The method of this study is a mixed design. There are two studies in this study using the in-depth interview method and the questionnaire survey method respectively. The research subjects of both studies are middle-aged and older adults over 45 years old. The first study adopted the in-depth interview method, interviewing 20 subjects (50-77 years old), to explore the factors of acceptance and rejection of the use of action payment by middle-aged and older adults, so as to establish the basis of subsequent scales and models. The second study used a questionnaire survey method. The research tools of the second study included the Mobile Payment Acceptance Scale, the Mobile Payment Rejection Scale and Yang et al. (2015), Yeh (2020) and Oliveira et al. (2016); the Mobile Payment Behavior Scale was adapted from the studies. After designing the questionnaire for this study, the reliability and validity of each scale were established through a pre-test, and then the scale was formally tested for intentional sampling, including paper and online questionnaires. A total of 386 valid questionnaires were collected, and structural equation modeling (SEM) was used to validate the mobile payment acceptance and rejection model proposed in this study to gain a deeper understanding of the factors that promote or hinder the adoption of mobile payment among middle-aged and older adults. The results of the study indicate that regardless of whether it is the acceptance mode or the rejection mode, in terms of the usefulness and non-usefulness of action payment, there is a positive and significant prediction effect on use attitude; in terms of social influence and lack of social influence, both usefulness and non-usefulness have positive and significant predictive effects. Usefulness has a positive and significant predictive effect; usage attitude has a positive and significant predictive effect on usage behavior. (1) Mobile payment acceptance mode: only the ease of use of mobile payment has a significant positive predictive effect on use attitude, while social influence has no significant predictive effect on the ease of use of mobile payment, and the ease of use of mobile payment has no significant effect on use attitude.(2) The mobile payment rejection model: lack of social influence, lack of privacy protection, ease of use, and unavailability all have significant predictive effects on usage attitudes, but ease of use has no significant predictive effect on non-usability.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 名詞釋義 4 第二章 文獻探討 5 第一節 行動支付之發展與定義 5 第二節 科技接受模式與行動支付相關研究 8 第三節 接受因子及拒斥因子與行動支付之相關研究 10 第三章 研究方法 17 第一節 研究設計 17 第二節 研究一 19 第三節 研究二 21 第四章 研究結果 24 第一節 研究一:質化分析結果 24 第二節 研究二:問卷預試結果 34 第三節 研究二:正式問卷分析 40 第四節 研究二:主要分析 51 第五章 討論與建議 59 第一節 結論與綜合討論 59 第二節 研究限制與未來研究建議 66 參考文獻 68 附錄一 訪談大綱 77 附錄二 正式問卷發放版本 79 附錄三 開放編碼訪談內容 90 附錄四 正式修題版本問卷 96

    一、中文文獻
    余桂霖(2010)。結構方程式模型:專題分析,秀威。
    吳明隆、凃金堂(2021)。SPSS與統計應用分析。五南。
    李淑芬、楊允文、賴玟鈞、郭佩筑、顏宇苹(2021)。以科技接受模式探討臺灣消費者使用電子支付之研究。全球商業經營管理學報,13,65-76。
    沈中華、王儷容、蘇哲緯(2020)。臺灣行動支付發展與歸類探討,存款保險資訊季刊,33(1),60-87。
    金融監督管理委員會(2020)。立法院三讀通過「電子支付機構管理條例」修正案。https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202012250002&dtable=News
    姜淳方、李昀修(2012)。台灣連鎖速食餐廳屬性、享樂及功利價值、行為意圖關係之研究-以台灣Y世代消費者為例。行銷科學學報,8(1),77-95。
    胡幼慧(2018)。質性研究--理論、方法及本土女性研究實例。巨流圖書公司。
    胡自立(2015年03月24日)。行動支付市場驅動因素與趨勢剖析。經濟部技術處產業技術評析。https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=10
    國家發展委員會(2019)。108年持有手機民眾數位機會調查報告。https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL2NrZmlsZS8yMTFjZWQzMy0yNjM0LTQ0ZTctODEyMy00MDkwYjIxNTQ0ZmYucGRm&n=MTA45bm05omL5qmf5peP5pW45L2N5qmf5pyD6Kq%2f5p%2bl5aCx5ZGK77y%2f5YWs5ZGK54mILnBkZg%3d%3d&icon=.pdf
    國家發展委員會(2020)。中華民國人口推估(2020至2070年)報告(1010901161)。https://pop-proj.ndc.gov.tw/upload/download/%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%E4%BA%BA%E5%8F%A3%E6%8E%A8%E4%BC%B0(2020%E8%87%B32070%E5%B9%B4)%E5%A0%B1%E5%91%8A.pdf
    張明杰、羅玉婷(2020)。行動支付使用意願之研究-以修正後的科技接受模型觀點。嶺東學報,46,51-84。https://doi.org/10.29850/LTJ
    張智玲(2016)。中高齡對智慧型手持裝置採用意圖之研究:整合科技接受模式、科技焦慮與知覺享受。國立台北大學企業管理學系。
    陳振甫(2016)。資訊社會下的高齡者生活型態研究。福祉科技與服務管理學刊,4(2)。https://doi.org/10.6283/JOCSG.2016.4.2.219
    資策會產業情報研究所(2020)。【行動支付大調查】行動支付用戶達六成 最常使用方案與場域大排名。https://mic.iii.org.tw/news.aspx?id=551
    資策會產業情報研究所(2021)。【2020下半年行動支付大調查】六成消費者常用行動支付 比例首度超越電子票證。https://mic.iii.org.tw/news.aspx?id=593
    資策會產業情報研究所(2022)。【行動支付大調查系列一】首選偏好度達50% 常用度逼近七成創新高 近六成消費者於疫情期間增加使用行動支付。https://mic.iii.org.tw/news.aspx?id=617
    二、英文文獻
    Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261. https://doi.org/10.1037/h0076477
    Au, Y. A., & Kauffman, R. J. (2008). The economics of mobile payments: Understanding stakeholder issues for an emerging financial technology application. Electronic Commerce Research and Applications, 7(2), 141-164. https://doi.org/10.1016/j.elerap.2006.12.004
    Becker, K. (2007). Mobile phone: The new way to pay. Federal Reserve Bank of Boston.
    Benson, V., Ezingeard, J. N., & Hand, C. (2019). An empirical study of purchase behaviour on social platforms. Information Technology & People. 32(4), 876-896. https://doi.org/ 10.1108/ITP-08-2017-0267
    Castleton, A. (2022). Older adults, tablets, and ambivalence: A grounded theory study of a one-tablet-per older person, public program in Uruguay. Journal of Aging & Social Policy, 1-22. https://doi.org/10.1080/08959420.2022.2047401
    Chen, W. C., Chen, C. W., & Chen, W. K. (2019). Drivers of mobile payment acceptance in China: An empirical investigation. Information, 10(12), 384. https://doi.org/10.3390/info10120384
    Choudrie, J., Pheeraphuttharangkoon, S., Zamani, E., & Giaglis, G. (2014, June 9-11). Investigating the adoption and use of smartphones in the UK: a silver-surfers perspective[Conference presentation]. European Conference on Information Systems (ECIS) , Tel Aviv, Israel. http://aisel.aisnet.org/ecis2014/proceedings/track16/8
    Christensen, J. H. (2022). Enhancing mixed methods pragmatism with systems theory: Perspectives from educational research. Systems Research and Behavioral Science, 39(1), 104-115. https://doi.org/10.1002/sres.2751
    Connaway, L. S., White, D., & Lanclos, D. (2011). Visitors and residents: What motivates engagement with the digital information environment?. Proceedings of the American Society for Information Science and Technology, 48(1), 1-7. https://doi.org/10.1002/meet.2011.14504801129
    Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593
    Crabtree, B. F., & Miller, W. L. (Eds.). (1992). Doing qualitative research. Sage Publications, Inc.
    Dahlberg, T., Mallat, N., Ondrus, J., Zmijewska, A. (2006, Jun 1-2). Mobile payment market and research-Past present and future [Conference presentation]. Helsinki mobility roundtable, Helsinki, Finland.
    Daştan, İ., & Gürler, C. (2016). Factors affecting the adoption of mobile payment systems: An empirical analysis. EMAJ: Emerging Markets Journal, 6(1), 17-24. s://doi.org/10.5195/emaj.2016.95
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. https://doi.org/10.2307/249008
    Deng, Z., Mo, X., & Liu, S. (2014). Comparison of the middle-aged and older users’ adoption of mobile health services in China. International Journal of Medical Informatics, 83(3), 210-224. https://doi.org/10.1016/j.ijmedinf.2013.12.002
    Dyck, J. L., Gee, N. R., & Smither, J. A. A. (1998). The changing construct of computer anxiety for younger and older adults. Computers in Human Behavior, 14(1), 61-77. https://doi.org/10.1016/S0747-5632(97)00032-0
    Featherman, M.S.& Pavlou, P.A. (2003). Predicting e-services adoption: A perceived risk facts perceptive. International Journal of Human–Computer Studies ,59(4), 451-474. https://doi.org/ 10.1016/S1071-5819(03)00111-3
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800313
    Frik, A., Nurgalieva, L., Bernd, J., Lee, J., Schaub, F., & Egelman, S. (2019). Privacy and security threat models and mitigation strategies of older adults. Fifteenth Symposium on Usable Privacy and Security, 21-40.
    Gao, H., Tang, J., Hu, X., & Liu, H. (2015, February). Content-aware point of interest recommendation on location-based social networks. Twenty-ninth AAAI Conference on Artificial Intelligence. 1721-1727.
    Hoffmann, C. P., Lutz, C., & Meckel, M. (2014). Digital natives or digital immigrants? The impact of user characteristics on online trust. Journal of Management Information Systems, 31(3), 138-171. https://doi.org/ 10.1080/07421222.2014.995538
    Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
    Kaur, P., Dhir, A., Singh, N., Sahu, G., & Almotairi, M. (2020). An innovation resistance theory perspective on mobile payment solutions. Journal of Retailing and Consumer Services, 55, 102059. https://doi.org/10.1016/j.jretconser.2020.102059
    Kesharwani, A., & Tripathy, T. (2012). Dimensionality of perceived risk and its impact on Internet banking adoption: An empirical investigation. Services Marketing Quarterly, 33(2), 177-193. https://doi.org/10.1080/15332969.2012.662461
    Khandkar, S. H. (2009). Open coding. University of Calgary, 23, 2009.
    Koenig-Lewis, N., Marquet, M., Palmer, A., & Zhao, A. L. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537-554. https://doi.org/10.1080/02642069.2015.1043278
    Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464-478. https://doi.org/10.1016/j.chb.2014.03.022
    Liu, G. S., & Tai, P. T. (2016). A study of factors affecting the intention to use mobile payment services in Vietnam. Economics World, 4(6), 249-273. https://doi.org/10.17265/2328-7144/2016.06.001
    Luna, I. R. D., Montoro-Ríos, F., Liébana-Cabanillas, F., & Luna, J. G. D. (2017). NFC technology acceptance for mobile payments: A Brazilian Perspective. Revista Brasileira de Gestão de Negócios, 19, 82-103. https://doi.org/10.7819/rbgn.v0i0.2315
    Nunnally, J.C., (1978), Psychometric Theory, New York: McGraw-Hill.
    Nysveen, H., Pedersen, P. E., & Thorbjørnsen, H. (2005). Explaining intention to use mobile chat services: moderating effects of gender. Journal of Consumer Marketing, 22(5), 247-256. https://doi.org/10.1108/07363760510611671
    Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414. https://doi.org/ 10.1016/j.chb.2016.03.030
    Pedlow, R., Kasnitz, D., & Shuttleworth, R. (2010). Barriers to the adoption of cell phones for older people with impairments in the USA: Results from an expert review and field study. Technology and Disability, 22(3), 147-158. https://doi.org/ 10.3233/TAD-2010-0298
    Pee, L. G., Woon, I. M., & Kankanhalli, A. (2008). Explaining non-work-related computing in the workplace: A comparison of alternative models. Information & Management, 45(2), 120-130. https://doi.org/10.1016/j.im.2008.01.004
    Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75. https://doi.org/10.1016/j.omega.2005.12.002
    Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently?. On the Horizon, 9(6), 1-6. https://doi.org/10.1108/10748120110424843
    Scott, C., & Medaugh, M. (2017). Axial coding. The international encyclopedia of communication research methods, 10, 9781118901731.
    Shoemaker, S. (2003). Acquisition of computer skills by older users: A mixed methods study. Research Strategies, 19(3-4), 165-180. https://doi.org/10.1016/j.resstr.2005.01.003
    Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Physical Therapy, 85(3), 257-268. https://doi.org/10.1093/ptj/85.3.257
    Sinha, M., Majra, H., Hutchins, J., & Saxena, R. (2018). Mobile payments in India: the privacy factor. International Journal of Bank Marketing, 37(1), 192-209. https://doi.org/10.1108/IJBM-05-2017-0099
    Spero, E., & Biddle, R. (2020, October). Out of sight, out of mind: UI design and the inhibition of mental models of security. New security paradigms workshop 2020, 127-143. https://doi.org/10.1145/3442167.3442174
    Straub, D., Limayem, M., & Karahanna-Evaristo, E. (1995). Measuring system usage: Implications for IS theory testing. Management Science, 41(8), 1328-1342. https://doi.org/10.1287/mnsc.41.8.1328
    Swilley, E. (2010). Technology rejection: the case of the wallet phone. Journal of Consumer Marketing. https://doi.org/10.1108/07363761011052341
    Thakur, R., & Srivastava, M. (2013). Customer usage intention of mobile commerce in India: an empirical study. Journal of Indian Business Research, 5(1),52-72. https://doi.org/10.1108/17554191311303385
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. https://doi.org/10.2307/30036540
    Westin, A. F. (1967). Special report: legal safeguards to insure privacy in a computer society. Communications of the ACM, 10(9), 533-537.
    Wicker, A. W. (1985). Getting out of our conceptual ruts: Strategies for expanding conceptual frameworks. American Psychologist, 40(10), 1094. https://doi.org/10.1037/0003-066X.40.10.1094
    Yang, K., & Forney, J. C. (2013). The moderating role of consumer technology anxiety in mobile shopping adoption: differential effects of facilitating conditions and social influences. Journal of Electronic Commerce Research, 14(4), 334.
    Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management & Data Systems. https://doi.org/ 10.1108/IMDS-08-2014-0243
    Yeh, H. (2020). Factors in the ecosystem of mobile payment affecting its use: From the customers' perspective in Taiwan. Journal of Theoretical and Applied Electronic Commerce Research, 15(1), 13-29. https://doi.org/ /10.4067/S0718-18762020000100103
    Zhang, L., Zhu, J., & Liu, Q. (2012). A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in Human Behavior, 28(5), 1902-1911. https://doi.org/10.1016/j.chb.2012.05.008
    Zhang, M., & Poon, W. C. (2021, July). Factors determining the adoption of mobile payment among elderly in Shandong, China. The 2021 12th International Conference on E-business, Management and Economics, 731-738. https://doi.org/10.1145/3481127.3481212
    Zhang, Y., Sun, J., Yang, Z., & Wang, Y. (2018). What makes people actually embrace or shun mobile payment: A cross-culture study. Mobile Information Systems, 2018. https://doi.org/10.1155/2018/7497545

    無法下載圖示 本全文未授權公開
    QR CODE