研究生: |
石家宜 Shih, Chia-I |
---|---|
論文名稱: |
開發以4,5-多巴雙加氧酶為基礎之全細胞生物感測器用於檢測二價銅離子及多巴胺 Development of DOPA 4,5-Dioxygenase-Based Whole-Cell Biosensors for the Detection of Copper(II) and Dopamine |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 二價銅離子 、多巴胺 、螢光感測器 、4,5-多巴雙加氧酶 、綠色合成 、甜菜色素 、全細胞生物感測器 |
英文關鍵詞: | Cu2+, dopamine, fluorogenic sensors, DOPA 4,5-dioxygenase, green synthesis, betaxanthin, whole-cell biosensors |
DOI URL: | http://doi.org/10.6345/NTNU202000805 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1.Ziegler, C.; Göpel, W., Biosensor development. Current opinion in chemical biology 1998, 2 (5), 585-591.
2.Chambers, J. P.; Arulanandam, B. P.; Matta, L. L.; Weis, A.; Valdes, J. J. Biosensor recognition elements; Texas Univ at San Antonio Dept of Biology: 2008.
3.Dincer, C.; Bruch, R.; Costa‐Rama, E.; Fernández‐Abedul, M. T.; Merkoçi, A.; Manz, A.; Urban, G. A.; Güder, F., Disposable sensors in diagnostics, food, and environmental monitoring. Advanced Materials 2019, 31 (30), 1806739.
4.Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y., The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 2017, 17 (7), 1623.
5.Guo, K.-H.; Lu, K.-H.; Yeh, Y.-C., Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS synthetic biology 2018, 7 (12), 2790-2795.
6.Chen, P.-H.; Lin, C.; Guo, K.-H.; Yeh, Y.-C., Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC advances 2017, 7 (47), 29302-29305.
7.Feher, J. J., Quantitative human physiology: an introduction. Academic press: 2017.
8.Bugg, T. D.; Lin, G., Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements? Chemical Communications 2001, (11), 941-952.
9.Mueller, L. A.; Hinz, U.; Zryd, J.-P., The formation of betalamic acid and muscaflavin by recombinant dopa-dioxygenase from Amanita. Phytochemistry 1997, 44 (4), 567-569.
10.Chou, Y.-C.; Shih, C.-I.; Chiang, C.-C.; Hsu, C.-H.; Yeh, Y.-C., Reagent-free DOPA-dioxygenase colorimetric biosensor for selective detection of L-DOPA. Sensors and Actuators B: Chemical 2019, 297, 126717.
11.Sasaki, N.; Abe, Y.; Goda, Y.; Adachi, T.; Kasahara, K.; Ozeki, Y., Detection of DOPA 4, 5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant and cell physiology 2009, 50 (5), 1012-1016.
12.Gandía-Herrero, F.; García-Carmona, F., Characterization of recombinant Beta vulgaris 4, 5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta 2012, 236 (1), 91-100.
13.Christinet, L.; Burdet, F. X.; Zaiko, M.; Hinz, U.; Zrÿd, J.-P., Characterization and functional identification of a novel plant 4, 5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology 2004, 134 (1), 265-274.
14.Gandía-Herrero, F.; García-Carmona, F., Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied microbiology and biotechnology 2014, 98 (3), 1165-1174.
15.Schliemann, W.; Kobayashi, N.; Strack, D., The decisive step in betaxanthin biosynthesis is a spontaneous reaction1. Plant Physiology 1999, 119 (4), 1217-1232.
16.Grewal, P. S.; Modavi, C.; Russ, Z. N.; Harris, N. C.; Dueber, J. E., Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metabolic engineering 2018, 45, 180-188.
17.Biller, D. V.; Bruland, K. W., Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Marine Chemistry 2012, 130, 12-20.
18.Yong-hong, G., To Detect Cu and Cd in Surface Water with Flame AAS and Graphite Furnace AAS [J]. The Administration and Technique of Environmental Monitoring 2005, 5.
19.Cui, L.; Wu, J.; Li, J.; Ge, Y.; Ju, H., Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine. Biosensors and Bioelectronics 2014, 55, 272-277.
20.Wang, J.; Zong, Q. J. S.; Chemical, A. B., A new turn-on fluorescent probe for the detection of copper ion in neat aqueous solution. 2015, 216, 572-577.
21.Tian, J.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X., Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical chemistry 2013, 85 (11), 5595-5599.
22.Molaakbari, E.; Mostafavi, A.; Beitollahi, H., Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sensors and Actuators B: Chemical 2015, 208, 195-203.
23.Yan, X.; Gu, Y.; Li, C.; Tang, L.; Zheng, B.; Li, Y.; Zhang, Z.; Yang, M., Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosensors and Bioelectronics 2016, 77, 1032-1038.
24.Cudjoe, E.; Pawliszyn, J., Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. Journal of Chromatography A 2014, 1341, 1-7.
25.Woolley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A., Capillary electrophoresis chips with integrated electrochemical detection. Analytical Chemistry 1998, 70 (4), 684-688.
26.Nezhad, M. H.; Tashkhourian, J.; Khodaveisi, J., Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. Journal of the Iranian Chemical Society 2010, 7 (2), S83-S91.
27.Numan, A.; Shahid, M. M.; Omar, F. S.; Ramesh, K.; Ramesh, S., Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors and Actuators B: Chemical 2017, 238, 1043-1051.
28.Lin, J.; Huang, B.; Dai, Y.; Wei, J.; Chen, Y., Chiral ZnO nanoparticles for detection of dopamine. Materials Science and Engineering: C 2018, 93, 739-745.
29.Gandía-Herrero, F.; Escribano, J.; García-Carmona, F., Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 2010, 232 (2), 449-460.
30.Cao, Y.; Liu, Y.; Li, F.; Guo, S.; Shui, Y.; Xue, H.; Wang, L., Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone. Microchemical Journal 2019, 150, 104176.
31.Haas, K. L.; Franz, K. J., Application of metal coordination chemistry to explore and manipulate cell biology. Chemical reviews 2009, 109 (10), 4921-4960.
32.Ranee, S. J.; Sivaraman, G.; Pushpalatha, A. M.; Muthusubramanian, S. J. S.; Chemical, A. B., Quinoline based sensors for bivalent copper ions in living cells. 2018, 255, 630-637.
33.Niu, Q.; Sun, T.; Li, T.; Guo, Z.; Pang, H., Highly sensitive and selective colorimetric/fluorescent probe with aggregation induced emission characteristics for multiple targets of copper, zinc and cyanide ions sensing and its practical application in water and food samples. Sensors and Actuators B: Chemical 2018, 266, 730-743.
34.Ye, H.; Ge, F.; Zhou, Y.-M.; Liu, J.-T.; Zhao, B.-X. J. S. A. P. A. M.; Spectroscopy, B., A new Schiff base fluorescent probe for imaging Cu2+ in living cells. 2013, 112, 132-138.
35.鄒穎佳, 紫茉莉中參與甜菜色素生合成之 4, 5-多巴雙加氧酶的結構與功能探討. 2017.
36.Lin, Y.-K.; Yeh, Y.-C., Dual-signal microbial biosensor for the detection of dopamine without inference from other catecholamine neurotransmitters. Analytical chemistry 2017, 89 (21), 11178-11182.