簡易檢索 / 詳目顯示

研究生: 石家宜
Shih, Chia-I
論文名稱: 開發以4,5-多巴雙加氧酶為基礎之全細胞生物感測器用於檢測二價銅離子及多巴胺
Development of DOPA 4,5-Dioxygenase-Based Whole-Cell Biosensors for the Detection of Copper(II) and Dopamine
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 二價銅離子多巴胺螢光感測器4,5-多巴雙加氧酶綠色合成甜菜色素全細胞生物感測器
英文關鍵詞: Cu2+, dopamine, fluorogenic sensors, DOPA 4,5-dioxygenase, green synthesis, betaxanthin, whole-cell biosensors
DOI URL: http://doi.org/10.6345/NTNU202000805
論文種類: 學術論文
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 誌謝 i 中文摘要 ii ABSTRACT iii Abbreviations iv 目錄 v 表目錄 vii 圖目錄 viii 第 1 章 緒論 1 1.1 生物感測器 1 1.1.1 原理及發展 1 1.1.2 全細胞生物感測器 3 1.2 兒茶酚胺類神經傳導物質 5 1.3 4,5-多巴雙加氧酶 7 1.4 甜菜醛胺酸與甜菜色素 9 1.4.1 甜菜醛胺酸 9 1.4.2 甜菜色素 10 1.5 文獻回顧 12 1.5.1 銅離子感測器 12 1.5.2 多巴胺感測器 14 1.6 實驗動機與目的 16 第 2 章 材料與實驗方法 18 2.1 實驗儀器 18 2.2 實驗藥品 19 2.3 實驗設計 21 2.3.1 銅離子感測器實驗設計 21 2.3.2 多巴胺生物感測器實驗設計 22 2.4 實驗方法 23 2.4.1 勝任細胞的製備 23 2.4.2 轉化作用 23 2.4.3 甜菜色素的合成 24 2.4.4 甜菜色素偵測二價銅離子 25 2.4.5 甜菜色素試紙應用 25 2.4.6 定點突變實驗 26 2.4.7 突變蛋白質活性篩選 30 2.4.8 蛋白質的表現及粗萃取 32 2.4.9 蛋白質膠體電泳 34 2.4.10 突變蛋白質用於多巴胺的檢測 37 2.4.11 數據處理 37 第 3 章 實驗結果與討論 38 3.1 甜菜色素的合成 38 3.1.1 輔因子濃度之影響 38 3.1.2 甜菜色素的合成條件 39 3.1.3 不同胺類合成之甜菜色素 40 3.2 甜菜色素對二價銅離子的偵測 42 3.2.1 不同相位羧基合成甜菜色素加銅離子後的螢光影響 42 3.2.2 優化2-AIPA-BX生成條件 44 3.2.3 金屬離子選擇性 45 3.2.4 螢光淬滅之時間追蹤 46 3.2.5 銅離子的劑量反應 47 3.2.6 銅離子與2-AIPA-BX之作用關係 48 3.2.7 應用於人工尿液樣品及試紙 50 3.2.8 與先前文獻比較 52 3.3 突變蛋白質的活性篩選 53 3.3.1 突變胺基酸位點的選擇 53 3.3.2 單點突變 54 3.3.3 雙點突變 57 3.4 突變蛋白質專一性測試 59 3.4.1 選擇性比較 59 3.4.2 左旋多巴與多巴胺混合干擾 60 3.4.3 檢測線性比較 61 第 4 章 結論 63 REFERENCE 64 附錄 本研究使用之引子、質體及菌種 67

    1.Ziegler, C.; Göpel, W., Biosensor development. Current opinion in chemical biology 1998, 2 (5), 585-591.
    2.Chambers, J. P.; Arulanandam, B. P.; Matta, L. L.; Weis, A.; Valdes, J. J. Biosensor recognition elements; Texas Univ at San Antonio Dept of Biology: 2008.
    3.Dincer, C.; Bruch, R.; Costa‐Rama, E.; Fernández‐Abedul, M. T.; Merkoçi, A.; Manz, A.; Urban, G. A.; Güder, F., Disposable sensors in diagnostics, food, and environmental monitoring. Advanced Materials 2019, 31 (30), 1806739.
    4.Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y., The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 2017, 17 (7), 1623.
    5.Guo, K.-H.; Lu, K.-H.; Yeh, Y.-C., Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS synthetic biology 2018, 7 (12), 2790-2795.
    6.Chen, P.-H.; Lin, C.; Guo, K.-H.; Yeh, Y.-C., Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC advances 2017, 7 (47), 29302-29305.
    7.Feher, J. J., Quantitative human physiology: an introduction. Academic press: 2017.
    8.Bugg, T. D.; Lin, G., Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements? Chemical Communications 2001, (11), 941-952.
    9.Mueller, L. A.; Hinz, U.; Zryd, J.-P., The formation of betalamic acid and muscaflavin by recombinant dopa-dioxygenase from Amanita. Phytochemistry 1997, 44 (4), 567-569.
    10.Chou, Y.-C.; Shih, C.-I.; Chiang, C.-C.; Hsu, C.-H.; Yeh, Y.-C., Reagent-free DOPA-dioxygenase colorimetric biosensor for selective detection of L-DOPA. Sensors and Actuators B: Chemical 2019, 297, 126717.
    11.Sasaki, N.; Abe, Y.; Goda, Y.; Adachi, T.; Kasahara, K.; Ozeki, Y., Detection of DOPA 4, 5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant and cell physiology 2009, 50 (5), 1012-1016.
    12.Gandía-Herrero, F.; García-Carmona, F., Characterization of recombinant Beta vulgaris 4, 5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta 2012, 236 (1), 91-100.
    13.Christinet, L.; Burdet, F. X.; Zaiko, M.; Hinz, U.; Zrÿd, J.-P., Characterization and functional identification of a novel plant 4, 5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiology 2004, 134 (1), 265-274.
    14.Gandía-Herrero, F.; García-Carmona, F., Escherichia coli protein YgiD produces the structural unit of plant pigments betalains: characterization of a prokaryotic enzyme with DOPA-extradiol-dioxygenase activity. Applied microbiology and biotechnology 2014, 98 (3), 1165-1174.
    15.Schliemann, W.; Kobayashi, N.; Strack, D., The decisive step in betaxanthin biosynthesis is a spontaneous reaction1. Plant Physiology 1999, 119 (4), 1217-1232.
    16.Grewal, P. S.; Modavi, C.; Russ, Z. N.; Harris, N. C.; Dueber, J. E., Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metabolic engineering 2018, 45, 180-188.
    17.Biller, D. V.; Bruland, K. W., Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Marine Chemistry 2012, 130, 12-20.
    18.Yong-hong, G., To Detect Cu and Cd in Surface Water with Flame AAS and Graphite Furnace AAS [J]. The Administration and Technique of Environmental Monitoring 2005, 5.
    19.Cui, L.; Wu, J.; Li, J.; Ge, Y.; Ju, H., Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine. Biosensors and Bioelectronics 2014, 55, 272-277.
    20.Wang, J.; Zong, Q. J. S.; Chemical, A. B., A new turn-on fluorescent probe for the detection of copper ion in neat aqueous solution. 2015, 216, 572-577.
    21.Tian, J.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X., Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical chemistry 2013, 85 (11), 5595-5599.
    22.Molaakbari, E.; Mostafavi, A.; Beitollahi, H., Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sensors and Actuators B: Chemical 2015, 208, 195-203.
    23.Yan, X.; Gu, Y.; Li, C.; Tang, L.; Zheng, B.; Li, Y.; Zhang, Z.; Yang, M., Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosensors and Bioelectronics 2016, 77, 1032-1038.
    24.Cudjoe, E.; Pawliszyn, J., Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. Journal of Chromatography A 2014, 1341, 1-7.
    25.Woolley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A., Capillary electrophoresis chips with integrated electrochemical detection. Analytical Chemistry 1998, 70 (4), 684-688.
    26.Nezhad, M. H.; Tashkhourian, J.; Khodaveisi, J., Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. Journal of the Iranian Chemical Society 2010, 7 (2), S83-S91.
    27.Numan, A.; Shahid, M. M.; Omar, F. S.; Ramesh, K.; Ramesh, S., Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors and Actuators B: Chemical 2017, 238, 1043-1051.
    28.Lin, J.; Huang, B.; Dai, Y.; Wei, J.; Chen, Y., Chiral ZnO nanoparticles for detection of dopamine. Materials Science and Engineering: C 2018, 93, 739-745.
    29.Gandía-Herrero, F.; Escribano, J.; García-Carmona, F., Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 2010, 232 (2), 449-460.
    30.Cao, Y.; Liu, Y.; Li, F.; Guo, S.; Shui, Y.; Xue, H.; Wang, L., Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone. Microchemical Journal 2019, 150, 104176.
    31.Haas, K. L.; Franz, K. J., Application of metal coordination chemistry to explore and manipulate cell biology. Chemical reviews 2009, 109 (10), 4921-4960.
    32.Ranee, S. J.; Sivaraman, G.; Pushpalatha, A. M.; Muthusubramanian, S. J. S.; Chemical, A. B., Quinoline based sensors for bivalent copper ions in living cells. 2018, 255, 630-637.
    33.Niu, Q.; Sun, T.; Li, T.; Guo, Z.; Pang, H., Highly sensitive and selective colorimetric/fluorescent probe with aggregation induced emission characteristics for multiple targets of copper, zinc and cyanide ions sensing and its practical application in water and food samples. Sensors and Actuators B: Chemical 2018, 266, 730-743.
    34.Ye, H.; Ge, F.; Zhou, Y.-M.; Liu, J.-T.; Zhao, B.-X. J. S. A. P. A. M.; Spectroscopy, B., A new Schiff base fluorescent probe for imaging Cu2+ in living cells. 2013, 112, 132-138.
    35.鄒穎佳, 紫茉莉中參與甜菜色素生合成之 4, 5-多巴雙加氧酶的結構與功能探討. 2017.
    36.Lin, Y.-K.; Yeh, Y.-C., Dual-signal microbial biosensor for the detection of dopamine without inference from other catecholamine neurotransmitters. Analytical chemistry 2017, 89 (21), 11178-11182.

    無法下載圖示 電子全文延後公開
    2025/07/16
    QR CODE