簡易檢索 / 詳目顯示

研究生: 田應平
論文名稱: 山區森林影像地形校正:MVECA法的嘗試
Topographic Normalization of Formosat2-MS Images of Forest in Rugged Terrain: Using The Modification of Variable Empirical Coefficient Algorithm
指導教授: 張國楨
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 145
中文關鍵詞: 山地地區衛星影像地形效應地形校正MVECA
英文關鍵詞: Topographic correction, FORMOSAT2 image, mountain forest, MVECA
論文種類: 學術論文
相關次數: 點閱:137下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在山區衛星影像的應用上,針對地形起伏所造成的地形效應進行校正為重要的前處理步驟,其足以影響後續影像分類的品質以及量化的精度。臺灣山地占土地面積的三分之二以上,山地地區的森林光譜輻射強度值受地形效應影響甚大,如能對植被影像進行地形校正,則有助於後續研究量化精度的提升。為克服改進前人校正模式的缺點,這篇研究將提出一種新的參考操作模式,基於VECA(Variable Empirical Coefficient Algorithm)以及Minnaert+SCS修正設想的 Modification of Variable Empirical Coefficient Algorithm(MVECA)修正模式。
    本研究以簡單統計評估、不同坡度坡向下的NDVI離散係數分析、分類評估等,對MVECA模式進行完整的效能檢驗。結果顯示其在無光照陰暗區以及低光照地區較前人模式具有較好的校正效能,與光照區的視覺差異、離散差異皆有所降低;與相對入射光cos(i)的R值除藍光段外,皆呈現極低度相關,顯示受地形效應影響大幅降低;在方位180°~225°、坡度0°~5°條件下的NDVI離散係數最低校正,效果最好;校正區域135°~180°方位的整體離散係數較其他方位都較低,尤其25°~50°坡度條件下,具有極佳校正效能;校正效能最差的地形位於坡度50°~55°、方位225°~270°條件下,以及方位315°~360°、坡度5°~15°的地形條件區域。研究最後以整合導向為目的,以最大相似分類法對研究區進行植被與裸露地二分類,結果顯示經校正後的影像分類較未校正影像有更高的分類精確度,完全陰暗區經校正後的影像分類較未校正影像有更高的分類精確度,證實本研究所提出的MVECA法具備地形校正的能力。
    以MVECA法對山地植被進行地形校正,發現NDVI與分類精度皆較校正前的影像有明顯改善,顯示該法對於森林生態系的監測可提供助益,包括對於陰暗區植被參數的推估與山區森林長時間季節變化的監測提供研究操作的參考。

    Topographic correction is a very important approach of pre-process in the remote sensing application in rugged terrain. Without this step, the quantification and classification of the image will be influenced. A new topographic correction approach, the Modification of Variable Empirical Coefficient Algorithm (MVECA), was developed on the theoretical and statistic analysis of the spectral values of remotely sensed data acquired from the rugged terrain and topographic variables. To prove the approach is practical, The approach was explained and analyzed in comparison with that before topographic correction and other approaches. The test site selected for the study is located on the relatively rugged terrain over the southeastern hill of the Yu Shan Mountain in Taiwan, the remotely sensed data utilized for examining the result of the proposed approach MVECA is Formosat2 image acquired over the test site. Visual comparison, statistical analysis, and the classification of corrected image are adopted for feasible evaluation of the proposed algorithm, and the results suggest that the proposed approach MVECA is capable for removing the topographic effects contained in Formosat2 MS image. The result also shows that MVECA has better ability of topographic correction than SCS+C and Minnaert+SCS in the area of the shadowed area and the steep terrain where incidesnt angles may approach 90°.

    摘要 a Abstract A 目錄 I 圖目錄 IV 表目錄 VII 第壹章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第貳章 文獻回顧 5 第一節 山地像元輻射傳輸理埨 5 一、朗伯體假設下的山地像元輻射傳輸理埨 5 二、非朗伯體假設下的山地植被冠篷輻射傳輸理埨 15 第二節 地形校正的文獻回顧 20 一、經驗模型 20 二、物理模型 25 三、半經驗模型 28 四、小結 30 第三節 路徑輻射的移除 32 一、暗物質消去法(Dark Object Straction,DOS) 32 二、線性迴歸校正法 33 三、大氣輻射傳輸模式 34 四、小結 35 第四節 校正效能評估的方法 37 一、視覺評估 37 二、統計特徵分析 37 三、影像分類 41 四、小結 42 第參章 研究方法 43 第一節 研究架構與流程 43 第二節MVECA模式推導 47 一、雛型建立 47 二、雛型實驗結果評估 51 三、雛型改進 57 第三節 研究區選擇與資料處理 73 一、研究區環境資訊 73 二、資料處理 75 第肆章 校正效能評估與討論 84 第一節 分區塊地形校正的效能評估 84 一、陰暗區 84 二、0<cos(i) <0.2之區塊 90 三、0.2≦cos(i)的區塊 95 第二節 全影像地形校正的效能評估 101 一、簡易指標評估 101 二、不同坡度坡向下的效能驗證 106 三、分類精確性評估下的校正效能驗證 116 第伍章 結論與未來研究 126 第一節 結論 126 一、面光區塊地形校正 126 二、陰暗區塊地形校正 128 三、全區地形校正 128 第二節 研究限制與未來研究 132 一、數值高程模型的討論 132 二、最小散射輻射值的限制 132 三、分類類別限制 132 四、不同分類法對於不同校正模式的精確度差異 133 五、統計變數引進的考量 133 六、SCS概念適用性的斟酌 133 中文文獻 134 西文文獻 137 電子文獻 142 符號對照表 143 謝辭 146

    中文文獻
    王宣惠、蔡光榮、陳昆廷、謝正倫(2009) 花蓮地區九岸溪集水區崩塌地變遷之衛星影像分析研究,礦冶季刊,53(1):102-108。
    王薏雯(2007) 整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜料監測水稻生長和預測產量,國立成功大學地球科學研究所碩士論文,15-24。
    田應平(2009) 福衛二號山區森林影像的地形校正,2009年中國地理學會學術論文發表會論文集,4。
    吳萬昌(1995) 梅山原生種植物園之規劃應用與經營管理,內政部營建署玉山國家公園管理處,8-17。
    段四波(2007) 山區遙感圖像地形光譜校正模型研究綜述,北京師範大學學報(自然科學版),43(3):362-366。
    高永年(2008a) 遙感影像地形校正物理模型的簡化與改正,測繪學報,37(1):89-95。
    高永年(2008b) 遙感影像地形光譜校正研究進展及其比較實驗,地理研究,27(2):467~477。
    國立中央大學太空及遙測研究中心(2010) 國立中央大學太空及遙測研究中心資源衛星接收站使用者手冊,國立中央大學太空及遙測研究中心,10-12。
    國立台灣師範大學福爾摩沙衛星二號影像加值處理分送中心(2008) 福爾摩沙衛星二號影像處理內部文件,國立台灣師範大學福爾摩沙衛星二號影像加值處理分送中心,32-40。
    陳奕霖(2000) 多頻譜衛星影像融合與紅外線影像合成,國立中央大學資訊工程研究所碩士論文, 35-37。
    陳姜琦(2002) 應用衛星遙測於區域蒸發散量之估算,國立成功大學水利與海洋工程研究所碩士論文,47~54。
    程傳(2008) 光學遙感的山地像元反射率反演模型研究,遙感信息,2008(1):31-36。
    黃俊偉(2001) 大範圍地區土地使用分類之研究,國立中央大學土木工程研究所碩士論文,7-15。
    黃微(2005) 一種改進的衛星影像地形算法,中國圖像圖形學報, 10(9):1124-1128。
    黃微、張良培、李平湘(2006) 一種顧及空間相關性遙感影像輻射度的地形校正演算法 ,測繪學報,35(3): 285-290。
    楊燕(2008) 森林覆蓋區山地遙感地形校正的方法研究,遙感信息, (1):22-26。
    廖雅苓(2007) 應用福爾摩沙衛星二號進行坡地土地覆蓋判釋,私立逢甲大學土地管理研究所碩士論文,3。
    聞建光(2007) 基於模擬數據分析地形校正模型效果及檢驗,北京師範大學學報,43(3):255-263。
    聞建光(2008) 複雜山區光學遙感反射率計算模型,中國科學, D 輯: 38(11): 1419-1427。
    劉守恆(2002) 衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學研究所碩士論文,22-25。
    劉振榮、林唐煌、陳良健、蔡富安(2009) SPOT衛星影像在山區輻射地形效應之校正,第二十八屆測量及空間資訊研討會,台灣中壢(電子分享檔未註明頁數)。
    鄭祈全、邱祈榮、陳燕章(1997) 應用遙測方法估測台灣杉林分之葉面積指數,台灣林業科學,12(3):309-317。
    鄭祺全(1998) 整合地理資訊系統與遙測技術於林分材積估測之研究,台灣林業科學,13(2):155-167。
    蕭國鑫、尹承遠、劉進金、游明芳、王晉倫(2003) SPOT 影響與航照資料應用於崩塌地辨識之探討,航測及遙測學刊,8(4):29-42。
    蕭國鑫、劉治中、劉進金、何心瑜、黃英婷(2008) 高解析影像應用於土地利用分類之探討,航測及遙測學刊,13(4):261-271。
    鍾耀武(2006) SCS+C地形輻射校正模型的應用分析研究,國土資源遙感 ,2006 (04):14-18。

    西文文獻
    Aspinall, R. J., Marcus, W. A., Boardman, J. W.( 2002) Considerations in collecting, processing, and analyzing high spatial resolution hyperspectral data for environmental investigations, Journal of Geographical Systems, 4:15-29.
    Chavez, P. S. (1988) An improved dark-object subtraction technique for atmospheric scattering correction of multispectral Data, Remote Sensing of Environment , 24:459-479.
    Chavez, P. S. (1996) Image-based atmospheric corrections: Revisited and improved, Photogrammetric Engineering and Remote Sensing, 62(9):1025-1036.
    Cheng, W. (2008) A model of topographic correction and reflectance retrieval for optical satellite data in forested areas, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,Beijing, 37(B6b):243-248.
    Chrysoulakis, N., Abrams, M., Feidas, H., and Arai, K.(2009) Comparison of atmospheric correction methods using aster data for the area of Crete: the ATMOSAT project, International Journal of Remote Sensing,in press. Retrieved April 2, 2009, from the World Wide Web: http://works.bepress.com/chrysoulakis/1/.
    Civco, D.L.(1989) Topographic normalization of Landsat Thematic Mapper digital imagery, Photogrammetric Engineering and Remote Sensing, 55, 1303-1309.
    Conel, J. E., Green, R. O., Vane, G., Bruegge, C. J., and Alley, R. E.(1987) AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance, In Proceedings of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop (Vane, G. Ed.), JPL Publish. 87-30, Jet Propulsion Laboratory, Pasadena, CA, 18-47.
    Dozier, J., Bruno, J., and Downey, P. (1981) A faster solution to the horizon problem, Computers and Geoscence., 7:145-151.
    Ferrier, G.( 1995) Evaluation of apparent surface reflectance estimation methodologies, International journal of remote sensing, 16(12):2291-2297.
    Gao, Y., Zhang, W. (2007) Variable empirical coefficient algorithm for removal of topographic effects on remotely sensed data from rugged terrain, Geoscience and Remote Sensing Symposium, IGARSS, 4733-4736.
    Gao, Y., Zhang, W.(2009) LULC classification and topographic correction of Landsat-7 ETM+ Imagery in the Yangjia River watershed: the Influence of DEM Resolution, Sensors, 9:1980-1995.
    Gitas, I.Z., Devereux, B.J. (2006) The role of topographic correction in mapping recently burned mediterranean forest area from Landsat TM images, International Journal of Remote Sensing, 27(1):41.
    Gu, D., Gillespie, A.(1998) Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry, Remote Sensing of Environment, 64:166-175.
    Hadjimitsis, D. G., Clayton, C. R. I., and Hope, V. S.(2004) An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs, International Journal of Remote Sensing, 25:3651–3674.
    Hadjimitsis, D. G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M. G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C. R. I.(2010) Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices , Natural Hazards and EarthSystem Sciences,10: 89-95.
    Iikura, Y. (2002) Topographic effects observed in shadowed pixels in satellite Imagery, Geoscience and Remote Sensin g Symposium, IGARSS'02 Proceedings, 6:3489-3491.
    Isaacs, R. G., Wang,W.-C. , Worsham, R. D. and Goldenberg, S. (1987) Multiple scattering LOWTRAN and FASCODE models. Applied Optics, 26:1272-1281.
    Kotchenova,S.Y., Vermote, E.F., Matarrese, R. and Klemm, F. J. (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data, Part I: Path radiance. Applied Optics, 45(26): 6762-6774.
    Law, K.H., and Nichol, J. (2004) Topographic correction for differential illumination effects on IKONOS satellite imagery, 20th ISPRS Congress, 35(3): 641-646. Retrieved April 2, 2009, from the World Wide Web: http://www.isprs.org/congresses/istanbul2004/comm3/comm3.aspx.
    Li, X., Strahler, A. H. (1992) Geometric-Optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing,IEEE Trans on Geoscience and Remote Sensing,30(2):276.
    Lillesand, T.M.etc al. (2008) Remote sensing and image interpretation, John Wiley & Sons, Inc., 6rd Edition.
    Lu, D., Ge, H., He, S., Xu, A., Zhou, G., Du, H. (2008) Pixel-based Minnaert correction method for reducing topographic effects on a Landsat 7 ETM_ Image, Photogrammetric Engineering and Remote Sensing,74(11): 1343-1350.
    Meyer, P., Itten, K. I., Kellenberger, T., Sandmeier, S., and Sandmeier, R. (1993) Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment, Journal of Photogrammetry and Remote Sensing, 48(4):17-28.
    Minnaert, N. (1941) The reciprocity principle in lunar photometry, Astrophysical Journal, 93 (3):403-410.
    Pouch , G. W., et al. (1990) Hyperspherical direction cosine transformation for separation of spectral and illumination information in digital scanner data, Photogrammetric Engineering and Remote Sensing, 56(4):475-479.
    Proy, C., Tanre, D., Deschamps P.Y.(1989) Evaluation of topographic effects in remotely sensed data, Remote Sensing of Environment, 30: 21-32.
    Reeder, D.H.(2002) Topographic correction of satellite images theory and application, Ph. D. thesis, Dartmouth College, Hanover, New Hampshire, 153.
    Riaño, D., Chuvieco. E., Salas. J., and Aguado, I.(2003) Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types, IEEE Transactions on Geoscience and Remote Sensing, 41(5):1056-1061.
    Richter, R. (2010b) Atmospheric / Topographic correction for airborne imagery. ATCOR-2/3 User Guide Version 7.1, German Aerospace Center,RSDC, Wessling Germany,18-20.
    Richter, R.(1998) Correction of satellite imagery over mountainous terrain, Applied Optics,37(18): 4004-4015.
    Richter, R.(2010a) Atmospheric / Topographic correction for airborne imagery. ATCOR-4 User Guide Version 5.1, German Aerospace Center,RSDC, Wessling Germany,108-150.
    Richter, R., Kellenberger, T., Kaufmann, H. (2009) Comparison of topographic correction methods, Remote Sensing, 1: 186 -196.
    Sandmeier, S., Itten, K.I. (1997) A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain, IEEE Transactions on Geoscience and Remote Sensing, 35(3): 708-717.
    Smith, G. M., and Milton, E. J.(1999) The use of the empirical line method to calibrate remotely sensed data to reflectance, International Journal of Remote Sensing, 20:2653-2662.
    Smith, J. A., Lin, T. L., and Ranson, K. J. (1980) The Lambertian assumption and Landsat data, Photogrammetric Engineering and Remote Sensing, 46:1183–1189.
    Soenen, S.A., Peddle, D. R. (2005) SCS+C: A Modified Sun-Canopy-Sensor topographic correction in forested terrain, IEEE Transactions on Geoscience and Remote Sensing, 43(9):2148–2159.
    Teillet, P.M., Guindon, B., Goodenough, D.G. (1982) On the slope-aspect correction of multispectral data, Canadian Journal of Remote Sensing, 8(2):1537-1540.
    Teillet,P. M., Fedosejevs ,G.(1995) On the dark target approach to atmospheric correction of remotely sensed data,Canadian Journal of Remote Sensing, 21: 374-387.
    Vincini, M ., Frazzi, E. (2003a) Multitemporal evaluation of topographic normalization methods on deciduous forest TM data, IEEE Transactions on Geoscience and Remote Sensing, 40(11):2586-2590.
    Vincini,M. , Reeder, D. , and Frazzi, E. (2003b) An empirical topographic normalization method for forest TM data, in Proc. IGARSS, Toronto, On Canada, June 24–28, 2002, 2091–2093.
    Wang, J., Anderson, G. P., Revercomb, H.E., and Knuteson, R.O.(1996) Validation of FASCOD3 and MODTRAN3:comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions, Applied Optics,35(30): 6028-6040.

    電子文獻
    山東理工大學(2006) 第二章 電磁輻射與地物光譜(3)。民99年2月1日,取自資源與環境工程學院網路課程平臺:http://210.44.176.183/zyyhjgcxy/zhwlkc/download/KC102077/Kejian/%E7%AC%AC2%E7%AB%A0%E7%94%B5%E7%A3%81%E8%BE%90%E5%B0%84%E4%B8%8E%E5%9C%B0%E7%89%A9%E5%85%89%E8%B0%B1(3).ppt.

    國家太空中心(2008) 「福爾摩沙衛星二號」之基本資料。民99年4月01日,取自國家太空中心太空計畫網站:http://www.nspo.org.tw/2008c/projects/project2/property.htm.

    南京師範大學地理科學學院(2007) 植被遙感 。民99年4月20日,取自南京師範大學線上精品課程:http://202.119.109.14/ygdxfx/Main.html.

    下載圖示
    QR CODE