研究生: |
李韋賢 Li, Wei-Sian |
---|---|
論文名稱: |
利用一價銠金屬催化不對稱反應合成掌性天然生物鹼 Rhodium(I)-Catalyzed Enantioselective Transformations: Syntheses of Natural Occurring Alkaloids |
指導教授: |
吳學亮
Wu, Hsyueh-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 471 |
中文關鍵詞: | 一價銠金屬催化 、脂肪族醛亞胺 、烯丙基加成反應 、掌性高烯丙基脂肪胺化合物 、3,4-二氫異喹啉 、不對稱加成 、掌性1,2,3,4-四氫異喹啉 |
英文關鍵詞: | enantioselective allylation of aliphatic aldimines, enantioselective arylation of 3,4-dihydroisoquinolinium salts, 1-aryl-tetrahydroisoquinolines |
DOI URL: | http://doi.org/10.6345/NTNU202000935 |
論文種類: | 學術論文 |
相關次數: | 點閱:162 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討利用一價銠金屬與掌性雙環[2.2.1]雙烯配基所形成掌性催化劑催化不對稱加成反應,並藉由得到的掌性化合物來合成生物鹼。內容分為兩部分:
一、 藉由以一價銠金屬催化劑催化脂肪族醛亞胺進行具鏡像選擇性之烯丙基化反應以合成掌性高烯丙基脂肪胺化合物
以3.0 mol %一價銠金屬與掌性雙環[2.2.1]雙烯配基L1a所形成錯合物為催化劑,在含水的條件下,催化烯丙基三氟硼酸鉀鹽11對脂肪族醛亞胺10及53進行不對稱加成反應,生成一系列掌性高烯丙基脂肪胺化合物12、76、77及78,產物產率為21–95%,鏡像超越值為85–98%,非鏡像選擇性最高為13.5:1。此外,將掌性高烯丙基脂肪胺化合物經由數步反應可合成出(R)-Coniceine (13)、(−)-Indolizidine 167B (3)、(S)-Coninne (5)及(−)-Pelletierine (6)。
二、 利用一價銠金屬催化對3,4-二氫異喹啉胺鹽進行不對稱芳基化反應
利用3.0 mol %一價銠金屬與掌性雙環[2.2.1]雙烯配基L22f所形成之催化劑,催化四芳香基硼與具不同取代3,4-二氫異喹啉胺所形成的錯鹽133進行不對稱芳基化反應,得到一系列1號位具芳基取代的掌性1,2,3,4-四氫異喹啉15,產率為35–94%,鏡像超越值為75–97%。值得注意的是,利用四芳香基硼為配位離子不光可穩定起始物,且可當作芳基提供來源。另外可藉由此方法合成(R)-Cryptostylines I (ent-7)。
This thesis describes the syntheses of natural occuring alkaoids from the enantioselective addition reactions catalyzed by Rh(I)-catalysts, which are in situ generated from [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1]heptadiene ligands. The content comprises two topics.
I. Syntheses of -Allyl Alkylamines by Enantioselective Rhodium(I)-Catalyzed Allylation of Aliphatic Imines
An enantioselective allylation of aliphatic aldimines was achieved, in the presence of 3.0 mol % of Rh(I)-catalyst in situ generated from the [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1]heptadiene ligand L1a, furnishing the desired homoallylic amines 12、76、77 and 78 bearing an -aliphatic side chain in 21–95% yields with 85–98% ee’s, and up to 13.5:1 diastereoselectivity under aqueous reaction conditions. Enantioselective syntheses of (R)-Coniceine (13), (−)-Indolizidine 167B (3), (S)-Coniine (5) and (−)-Pelletierine (6) were performed to prove the feasibility of this method.
II. Enantioselective Rhodium(I)-Catalyzed Arylation of 3,4-Dihydroisoquinolinium salts
An enantioselective arylation of 3,4-dihydroisoquinolinium salts was reported. In the presence of 3.0 mol % of the catalyst in situ generated from the [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1]heptadiene ligand L22f, the desired 1-aryl-tetrahydroisoquinolines 15 were afforded in 35–94% yields with 75–97% ee’s. Notably, the use of tetraarylborate counteranions not only enhance the stability of substrates but they also are nucleophilic aryl donor for such addition reaction. This method tolerates with various dihydroisoquinolinium tetraarylborates 133 to efficiently offer chiral 1-aryl-tetrahydroquinolines 15, demonstrated in the expedient synthesis of (−)-cryptostyline I (ent-7).
1. Smith, S. W. Toxicol Sci. 2009, 110, 4.
2. Aronstam, R. S.; Daly, J. W.; Spande, T. F.; Narayanan, T. K.; Albuquerque, E. X. Neurochem. Res. 1986, 11, 1227.
3. Lee, S. T. ; Green, B. T. ; Welch, K. D. ; Pfister, J. A.; Panter, K. E. Chem. Res. Toxicol. 2008, 21, 2061.
4. Chilton, J.; Partridge, M. W. J. Pharm. Pharmacol. 1950, 2, 784.
5. Minor,D. L.; Wyrick, S. D.; Charifson, P. S.; Watts, V. J.; Nichols, D. E.; Mailman, R. B. J. Med. Chem. 1994, 37, 4317.
6. Holub, N.; Neidhöfer, J.; Blechert, S. Org. Lett. 2005, 7, 1227–1229.
7. Peña-López, M.; Martínez, M. M.; Sarandeses, L. A. Sestelo, J. P. Org. Lett. 2010, 12, 852.
8. For reviews of tert-butanesulfonamide, see: (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984 (b) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600
9. For examples, see: (a) Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 2004, 15, 3823. (b) Li, S.-W.; Batey, R. A. Chem. Commun. 2004, 1382. (c) Zhang, W. X.; Hou, X. L. Chin. Chem. Lett. 2006, 17, 1037. (d) Bertrand, M. B.; Wolfe, J. P. Org. Lett. 2006, 8, 2353. (e) Sun, X.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2006, 8, 4979. (f) Gonzalez-Gomez, J. C.; Foubelo, F.; Yus, M. Synlett 2008, 2777. (g) Reddy, L. R.; Hu, B.; Prashad, M.; Prasad, K. Org. Lett. 2008, 10, 3109. (h) Nishikawa, Y.; Kitajima, M.; Kogure, N.; Takayama, H. Tetrahedron 2009, 65, 1608.
10. Vilaivan, T.; Winotapan, C.; Banphavichit, V.; Shinada, T.; Ohfune, Y. J. Org. Chem. 2005, 70, 3464.
11. Cook, G. R.; Maity, B. C.; Kargbo, R. Org. Lett. 2004, 6, 1741.
12. Balasubramanian, N.; Mandal, T.; Cook, G. R. Org. Lett. 2015, 17, 314.
13. Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398.
14. Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494, 216.
15. Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 3332.
16. For selected examples on rhodium-catalyzed enantioselective 1,2-arylation of aryl imines, see: (a) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128. (b) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (c) Weix, D. J.; Shi, Y.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 1092. (d) Duan, H.-F.; Jia, Y.- X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567. (e) Wang, Z.-Q.; Feng, C.- G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336. (f) Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815. (g) Nishimura, T.; Noishiki, A.; Chit Tsui, G.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 5056. (h) Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2013, 52, 1777. (i) Wang, H.; Jiang, T.; Xu, M.-H. J. Am. Chem. Soc. 2013, 135, 971. (j) Chen, C.-C.; Gopula, B.; Syu, J.-F.; Pan, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. J. Org. Chem. 2014, 79, 8077. (k) Wang, H.; Li, Y.; Xu, M.-H. Org. Lett. 2014, 16, 3962. (l) Jiang, T.; Chen, W.-W.; Xu, M.-H. Org. Lett. 2017, 19, 2138. (m) Syu, J.- F.; Lin, H.-Y.; Cheng, Y.-Y.; Tsai, Y.-C.; Ting, Y.-C.; Kuo, T.-S.; Janmanchi, D.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2017, 23, 14515. (n) Shan, H.; Zhou, Q.; Yu, J.; Zhang, S.; Hong, X.; Lin, X. J. Org. Chem. 2018, 83, 11873. (o) Xue, F.; Liu, Q.; Zhu, Y.; Qinga, Y.; Wan, B. RSC Adv. 2019, 9, 25377.
17. For rhodium-catalyzed 1,2-alkenylation of aryl imines, see: (a) Shintani, R.; Takeda, M.; Soh, Y.-T.; Ito, T.; Hayashi, T. Org. Lett. 2011, 13, 2977. (b) Luo, Y.; Carnell, A. J.; Lam, H. W. Angew. Chem. Int. Ed. 2012, 51, 6762. (c) Gopula, B.; Chiang, C.-W.; Lee, W.-Z.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Org. Lett. 2014, 16, 632. (d) Cui, Z.; Chen, Y.- J.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. Org. Lett. 2014, 16, 1016. (e) Gopula, B.; Zeng, H.-W.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. J. Chin. Chem. Soc. 2017, 65, 312.
18. For examples on rhodium-catalyzed 1,2-arylation of aliphatic imines, see: (a) Trincado, M.; Ellman, J. A. Angew. Chem. Int. Ed. 2008, 47, 5623. (b) Cui, Z.; Yu, H.-J.; Yang, R.- F.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. J. Am. Chem. Soc. 2011, 133, 12394. (c) Kato, N.; Shirai, T.; Yamamoto, Y. Chem. Eur. J. 2016, 22, 7739.
19. Qian, X.-W.; Xue, Z.-J.; Zhao, Q.; Cui, Z.; Chen, Y.-J.; Feng, C.-G.; Lin, G.-Q. Org. Lett. 2017, 19, 5601.
20. For rhodium-catalyzed 1,2-allylation of cyclic sulfamate imines, see: (a) Luo, Y.; Hepburn, H. B.; Chotsaeng, N.; Lam, H. M. Angew. Chem. Int. Ed. 2012, 51, 8309. (b) Hepburn, H. B.; Chotsaeng, N.; Luo, Y.; Lam, H. M. Synthesis 2013, 45, 2649. (c) Hepburn, H. B.; Lam, H. M. Angew. Chem. Int. Ed. 2014, 53, 11605. (d) Martínez, J. I.; Smith, J. J.; Hepburn, H. B.; Lam, H. M. Angew. Chem. Int. Ed. 2016, 55, 1108.
21. 黃普航 (2016)。碩士論文,國立台灣師範大學研究所,台北,台灣。
22. Chiang, P.-F.; Li, W.-S.; Jian, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Wu, H.-L. Org. Lett. 2018, 20, 158.
23. (a) 李家瑋 (2017)。碩士論文,國立台灣師範大學研究所,台北,台灣。
(b) 李治毅 (2017)。碩士論文,國立台灣師範大學研究所,台北,台灣。
(c) 蔡傜竹 (2018)。碩士論文,國立台灣師範大學研究所,台北,台灣。
24. 黃俊榮 (2019)。碩士論文,國立台灣師範大學研究所,台北,台灣。
25. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.
26. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405.
27. [α]21D ‒1.2 (c 1.0, EtOH); for comparison, see: Zill, N.; Schoenfeld, A.; Girard, N.; Taddei, M.; Mann, A. J. Org. Chem. 2012, 77, 2246. [α]21D −1.5 (c 1.0, EtOH).
28. Davies, S. G.; Fletcher, A. M.; Hughes, D. G.; Lee, J. A.; Price, P. D.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E.; Williams, O. M. H. Tetrahedron 2011, 67, 9975.
29. [α]21D ‒98.3 (c 1.0, CH2Cl2); for comparison, see: Roa, L. F.; Gnecco, D.; Galindo, A.; Teran, J. L. Tetrahedron: Asymmetry 2004, 15, 3393. [α]20D +107.4 (c 1.0, CH2Cl2) for the enantiomeric isomer.
30. Jurberg, I. D.; Peng, B.; Wçstefeld, E.; Wasserloos, M.; Maulide, N. Angew. Chem. Int. Ed. 2012, 51, 1950.
31. [α]22D ‒6.0 (c 1.0, CH2Cl2); for comparison, see: Pinho, V. D.; Burtoloso, A.C.B. Tetrahedron Letters 2012, 53, 876. [α]25D ‒6.7 (c 1.0, CH2Cl2).
32. Abels, F.; Lindemann, C.; Koch, E.; Schneider, C. Org. lett. 2012, 14, 5972.
33. [α]21D +9.3 (c 0.3, EtOH) ; for comparison, see: Kondekar, N. B.; Kumar, P. Synthesis 2010, 3105. [α]25D ‒8.6 (c 0.25, EtOH) for R-isomer.
34. [α]20D ‒17.5 (c 0.5, EtOH); for comparison, see: Cheng, G.; Wang, X.; Su, D.; Liu, H.; Liu, F.; Hu, Y. J. Org. Chem. 2010, 75, 1911. [α]25D +19.4 (c 0.47, EtOH)
35. Naito, R.; Yonetoku, Y.; Okamoto, Y.; Toyoshimata, A.; Ikeda, K.; Takeuchi, M. J. J. Med. Chem. 2005, 48, 6597.
36. Morais, L.C.S.L.; Barbosa-Filho, J. M.; NAlmeida, R. J. Ethnopharmacol. 1998, 62, 57.
37. (a) Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Tetrahedron 2002, 58, 6795−6798. (b) Louafi, F.; Moreau, J.; Shahane, S.; Golhen, S.;Roisnel, T.; Sinbandhit, S.; Hurvois, J.-P. J. Org. Chem. 2011, 76, 9720−9732.
38. For examples: (a) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341. (b) Stçckigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem. Int. Ed. 2011, 50, 8538. (c) Chrzanowska, M.; Grajewska, A.; Rozwadowska, M. D. Chem. Rev. 2016, 116, 12369−12465.
39. (a) Willoughby, C. A.; Buchwald, S. L. J. Org. Chem. 1993, 58, 7627−7629. (b) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8952−8965. (c) Morimoto, T.; Achiwa, K. Tetrahedron: Asymmetry 1995, 6, 2661−2664. (d) Vedejs, E.; Trapencieris, P.; Suna, E. J. Org. Chem. 1999, 64, 6724−6729. (e) Lu, S.-M.;Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45, 2260−2263. (f) Li, C.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 13208−13209. (g) Evanno, L.; Ormala, J.; Pihko, P. M. Chem. - Eur. J. 2009, 15, 12963−12967. (h) Chang, M.; Li, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 10679−10681. (i) Xie, J.-H.; Yan, P.-C.; Zhang, Q.-Q.; Yuan, K.-X.; Zhou, Q.-L. ACS Catal. 2012, 2, 561−564. (j) Berhal, F.; Wu, Z.; Zhang, Z.; Ayad, T.; Ratovelomanana-Vidal, V. Org. Lett. 2012, 14, 3308−3311. (k) Ružič, M.; Pečavar, A.; Prudič, D.; Kralj, D.; Scriban, C.; Zanotti-Gerosa,Antonio Org. Process Res. Dev. 2012, 16, 1293−1300. (l) Iimuro, A.; Yamaji, K.; Kandula, S.; Nagano, T.; Kita, Y.; Mashima, K. Angew. Chem., Int. Ed. 2013, 52, 2046−2050. (m) Ye, Z.-S.; Guo, R.-N.; Cai, X.-F.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2013, 52, 3685−3689. (n) Ding, Z.-Y.; Wang, T.; He, Y.-M.; Chen, F.; Zhou, H.-F.; Fan, Q.; Guo, Q.-H.; Chan, A. S. C. Adv. Synth. Catal. 2013, 355, 3727−3735. (o) Ji, Y.; Shi, L.; Chen, M.-W.; Feng, G.-S.; Zhou, Y.-G. J. Am. Chem. Soc. 2015, 137, 10496−10499. (p) Schwenk, R.; Togni, A. Dalton Trans 2015, 44, 19566−19575. (q) Wen, J.; Tan, R.; Liu, S.; Zhang, X. Chem. Sci. 2016, 7, 3047−3051. (r) Li, H.; Tian, P.; Xu, J.-H.; Zheng, G.-W. Org. Lett. 2017, 19, 3151−3154. (s) Chen, M.-W.; Ji, Y.; Wang, J.; Chen, Q.-A.; Shi, L.; Zhou, Y.-G. Org. Lett. 2017, 19, 4988−4991. (t) Yang, T.; Yin, Q.; Gu, G.; Zhang, X. Chem. Commun. 2018, 54, 7247−7250. (u) Nie, H.; Zhu, Y.; Hu, X.; Wei, Z.; Lin, Y.; Zhou, G.; Wang, P.; Jiang, R.; Zhang, S. Org. Lett. 2019, 21, 8641−8645.
40. Wang, S.; Seto, C. T. Org. Lett. 2010, 12, 2690.
41. Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2005, 44, 6700.
42. Taylor, A. M.; Schreiber, S. L. Org. Lett. 2006, 8, 143.
43. Itoh, T.; Miyazaki, M.; Fukuoka, H.; Nagata, K.; Ohsawa, A. Org. Lett. 2006, 8, 1295.
44. Liu, X.; Sun, S.; Meng, Z.; Lou, H.; Liu, L. Org. Lett. 2015, 17, 2396.
45. Arokianathar, J. N.; Frost, A. B.; Slawin, A. M. Z.; Stead, D.; Smith, A. D. ACS Catal. 2018, 8, 1153−1160.
46. (a) Nadeau, C.; Aly, S.; Belyk, K. J. Am. Chem. Soc. 2011, 133, 2878. (b) Robinson, D. J.; Spurlin, S. P.; Gorden, J. D.; Karimov, R. R. ACS Catal. 2020, 10, 51.
47. Wang, Y.; Liu Y.; Zhang, D.; Wei, H.; Shi, M.; Wang, F. Angew. Chem. Int. Ed. 2016, 55, 3776–3780.
48. 丁奕晴 (2018)。碩士論文,國立台灣師範大學研究所,台北,台灣。
49. Brossi, A.; Teitel, S. Helv. Chim. Acta. 1971, 54, 1564–1571.
50. Singh, K. N.; Singh, P.; Sharma, E.; Deol, Y. S. Synthesis 2014, 46, 1739–1750.
51. (a) Chemla, F.; Hebbe, V.; Normant, J.-F., Synthesis 2000, 75. (b) Shikora, J. M.; Chemler, S. R. Org. Lett. 2018, 20, 2133.
52. (a) Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 1891. (b) Stubba, D.; Lahm, G.; Geffe, M.; Runyon, J. W.; Arduengo, A. J.; Opatz, T. Angew. Chem. Int. Ed. 2015, 54, 14187. (c) Pitea, D.; Beltrame, P. L.; Ferrazza, A.; Todeschini, R.; Favini, G. Gazz. Chim. Ital. 1984, 114, 35. (d) Pauvert, M.; Collet, S.; Guingant, A. Tetrahedron Lett. 2003, 44, 4203. (e) Page, P. C. B.; Buckley, B. R.; Rassias, G. A.; Blacker, A. J. Org. Lett. 2005, 7, 375.