簡易檢索 / 詳目顯示

研究生: 陳志均
Chih-Chun Chen
論文名稱: 二氧化碳與烷類轉換反應在銥原子氧化石墨烯表面之理論計算研究
Density-Functional Theory Calculation of CO2 and Alkane Conversion over Ir1-GO surface
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 轉換反應二氧化碳乙烷氧化石墨烯銥原子
英文關鍵詞: conversion, CO2, C2H6, graphene oxide, iridium
論文種類: 學術論文
相關次數: 點閱:158下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章藉由密度泛函理論研究二氧化碳和烷類在銥原子氧化石墨烯表面進行轉換反應。銥原子氧化石墨烯表面對甲烷、乙烷和二氧化碳具有高吸附能,其吸附能分別為 -0.86、-0.92和-0.56eV。在甲烷與二氧化碳的轉換反應下,甲烷分子先吸附在表面(Eads = -0.86 eV)後,進行C-H斷鍵形成CH3和H片斷,此步驟經過0.61 eV的反應能障,其中氫原子片斷與表面上的環氧基形成OH,而CH3與OH再進行結合形成甲醇,此步驟經過0.91 eV的反應能障,最後形成的CH3OH分子脫附表面,脫附能量為0.64 eV,此過程不趨向與二氧化碳發生反應,而趨向進行甲烷氧化反應。在二氧化碳分子和乙烷分子的轉換方面,首先乙烷吸附於表面,吸附能為-0.92 eV,接著進行C-H斷鍵而形成乙基和氫原子分別吸附於銥原子以及環氧基,此步驟跨越0.63 eV,接著在二氧化碳吸附(Eads = 0.58 eV)後,有四種可能的反應路徑:乙基與二氧化碳結合分別形成 (1) C2H5COO (Ea = 0.95 eV); (2) COOC2H5 (Ea = 1.70 eV);氫原子與二氧化碳結合分別形成 (3) COOH (Ea = 1.49 eV);(4) HCOO (Ea = 3.54 eV),而路徑(1)形成的丙酸根為活化能最低,且最可能的反應路徑,因此反應趨向產生丙酸。關鍵字:轉換反應、二氧化碳、乙烷、氧化石墨烯、銥原子。

    We perform a study to investigate the conversion of CO2 and C2H6 molecules to propanoic acid on Iridium-modified graphene oxide (Ir1-GO) surface by using the density functional theory. The high catalytic activity for conversion of CH4, C2H6 and CO2 into methanol and propanoic acid via the high adsorption energies of CH4, C2H6 and CO2 on Ir1-GO, -0.86, -0.92 and -0.56eV, respectively, are described as follows. At first, CH4 and C2H6 would be dehydrogenated to oxide site of surface to form CH3 + OH and C2H5 + OH with the barriers of 0.61 and 0.63eV, respectively. Secondly, methyl could go through the pathway of CH3 + OH → CH3OH. However, the additional adsorbed CO2 could either react with ethyl to form C2H5COO or COOC2H5 with the barriers of 0.95eV and 1.70eV, respectively, or it could be hydrogenated by the hydroxyl to form HCOO (3.54eV) or COOH (1.49ev). Consequently, the most probable path for the conversion of a CO2 molecule with ethane on the Ir1-graphene oxide surface is the formation of a propanoic acid. To understand the interaction between adsorbates and surfaces, a series of structural calculation and analyzation were carried out.key word : Conversion, CO2, C2H6, graphene oxide and iridium.

    中文摘要 i 英文摘要 ii 總目錄 iii 第一章 1 緒論 1 第二章 理論與計算方法 4 §2-1 固態材料的電子結構理論 4 §2-1-1 密度泛函理論Density functional theory (DFT) 4 § 2-1-2局部密度近似法 (Local Density Approximation, LDA) 7 § 2-1-3 廣義梯度近似法 (Generalized Gradient Approximation, GGA) 9 § 2-1-4空間週期性 (periodic boundary condition) 10 § 2-1-5布洛赫定理(Bloch Theorem) 11 § 2-1-6虛位勢 (pseudopotential) 13 § 2-1-7 VASP計算軟體 14 §2-2 擾動彈簧模型(Nudged Elastic Band; NEB) 15 §2-3 態密度(Density of state, DOS) 17 §2-4電子局域化函數(Electron localization function, ELF) 18 第三章 研究Ir1-GO表面電子結構以及對二氧化碳和烷類轉換反應的特性 19 §3-1 前言 19 §3-2 計算方法與模型建立 21 §3-3 結果與討論 24 §3-3-1.1 氧化石墨烯表面上吸附位置的ELF之探討 24 §3-3-1.2 單顆金屬原子在氧化石墨烯表面上吸附結構及能量之探討 31 §3-3-2.1吸附物在單一金屬原子氧化石墨烯表面的吸附結構及吸附能 41 §3-3-2.2吸附物在單一銥原子氧化石墨烯表面的電子結構分析 48 §3-3-4 CH4分子在Ir1-GO表面反應機構研究探討 59 §3-3-5.1 乙烷和二氧化碳在Ir1-GO轉換反應下各種路徑的活化能及電子結構分析 61 §3-3-5.2 乙烷和二氧化碳在Ir1-GO轉換反應下各種路徑選擇性的電子結構分析 74 §3-3-6 四顆原子大小銥金屬簇在氧化石墨烯上之結構建立 77 第四章 總結 84 參考文獻 87

    (1) Silvi, B.; Savin, A. Nature 1994, 371, 683.
    (2) Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H. G. Angew. Chem. Int. Ed. Engl. 1991, 30, 409.
    (3) Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.
    (4) Lackner, K. S. Science 2003, 300, 1677.
    (5) Song, C. Catal. Today 2006, 115, 2.
    (6) Yuliati, L.; Yoshida, H. Chem. Soc. Rev. 2008, 37, 1592–1602.
    (7) York, A. P. E.; Xiao, T. C.; Green, M. L. H.; Claridge, J. B. Catal. Rev. - Sci. Eng. 2007, 49, 511–560.
    (8) Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231–233.
    (9) Wei, J.; Iglesia, E. J. Phys. Chem. B 2004, 108, 7253–7262.
    (10) Choi, J.; Kobayashi, Y.; Sakakura, T. J. Org. Chem. 2001, 66, 5262–5263.
    (11) Rasko, J.; Solymosi, Catalyst. Catal. Lett. 1997, 46, 153–157.
    (12) Ding, Y.; Huang, W.; Wang, Y. Fuel Process. Technol. 2007, 88, 319–324.
    (13) Kurioka, M.; Nakata, K.; Jintoku, T.; Taniguchi, Y.; Takaki, K.; Fujiwara, Y. Chem. Lett. 1995, 24, 244–244.
    (14) Wei, J.; Iglesia, E. Angew. Chem., Int. Ed. 2004, 43, 3685–3688.
    (15) Jones, J. H. Platinum Metals Rev. 2000, 44, 94–105.
    (16) Wei, J; Iglesia, E. J. Phys. Chem. B. 2004, 108, 4094–4103.
    (17) Belgued, M.; Pareja, P.; Amariglio, A.; Amariglio, H. Nature. 1991, 352, 789–790.
    (18) Havran, V.; Dudukovic, M, P.; Lo, C, S. Ind. Eng. Chem. Res. 2011, 50, 7089–7100.
    (19) Wilcox, E. M.; Roberts, G. W.; Spivey, J. J. Catalysis Today 88 2003, 83–90.
    (20) Sangthong, W.; Probst, M.; Limtrakul, J. ChemPhysChem. 2014, 15, 514 – 520
    (21) Lin, J.; Wang, A.; Qiao, B.; Liu, X; Yang, X; Wang, X.;Liang, J.; Li, X, J.; Liu, J.; Zhang, T. J. Am. Chem. Soc. 2013, 135, 15314−15317
    (22) Yang, X, F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Accounts of Chemical Research. 2013, 46, 1740–1748
    (23) Qiao, B.; Wang, A.; Yang, X.; Allard, L, F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J. and Zhang, T. Nature Chemistry. 2011, 3, 634–641
    (24) Kong, B, S.; Geng, J. and Jung, H, T. Chem. Commun. 2009, 16,2174–2176
    (25) Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F, Y, C.; Yan, Q.; Chen, P. and Zhang, H. J. Phys. Chem. C. 2009, 113, 10842–10846
    (26) Li, F. Zhao, J. and Chen, Z. J. Phys. Chem. C 2012, 116, 2507–2514
    (27) Yang, M.; Zhou, M.; Zhang, A. and Zhang, C. J. Phys. Chem. C 2012, 116, 22336−22340
    (28) Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J, L.; Delichatsios, M. and Ukleja, S. J. Phys. Chem. C 2010, 114, 19459–19466
    (29) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (30) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
    (31) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (32) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
    (33) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
    (34) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    (35) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (36) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (37) Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
    (38) Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
    (39) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.
    (40) Chen, C.; Zhang, J.; Zhang, B.; Duan, H, M. J. Phys. Chem. C 2013, 117, 4337−4344
    (41) Wang, C, C.; Siao, S, S.; Jiang, J, C. J. Phys. Chem. C. 2012, 116, 6367−6370
    (42) Pawluk, T,; Hirata, Y.; Wang, L. J. Phys. Chem. B, 2005, 109, No. 44, 20817-20823.
    (43) Cardelino, B, H.; Moore, C, E.; Cardelino, C, A.; Frazier, D, O. Bachmann, K, J. J. Phys. Chem. A 2001, 105, 849-868.

    下載圖示
    QR CODE