簡易檢索 / 詳目顯示

研究生: 李莉偵
Li-Chen Lee
論文名稱: 中孔洞非均勻相有機催化劑之開發研究
The Development of Functionalized Mesoporous Silica Nanosphere as a Heterogeneous Organocatalyst
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 101
中文關鍵詞: 中孔洞非均勻相催化
英文關鍵詞: mesoporous silica nanosphere, heterogeneous catalyst
論文種類: 學術論文
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1992年MobilOil公司利用帶正電性四級銨鹽之界面活性劑當模版,與帶負電荷之矽酸鈉結合,成功地開發出一系列孔洞大小介於1.5~10.0 nm層次之氧化矽分子篩。由於此系列中孔洞分子篩具有高表面積、熱穩定性高、孔洞大小一致及可調整大小的孔洞等優點,近年來吸引了許多科學家的興趣與重視。本實驗即利用此系列之一的MCM-41 (Mobil Composite of Matter 41)原有的優勢作為主架構結合不同左旋脯胺基酸衍生物作為非均勻相之有機催化劑。
    在中孔洞非均勻相有機催化劑的鑑定方面,以X射線粉末繞射儀(XRD)來鑑定產物之結晶構造,同時為瞭解有機矽源成分是否進入中孔洞分子篩,我們以13C、29Si 固態NMR 探測;而表面積、孔洞分佈之量測則使用氮氣吸附儀;並利用元素分析法推算出中孔洞分子篩內的有機莫耳含量;最後分別以穿透式顯微鏡(TEM)及掃描式電子顯微鏡(SEM)來鑑定產物的結構。
    利用中孔洞非均勻相有機催化劑,以對-硝基苯甲醛和環己酮作為反應物,催化不對稱醇醛縮和反應。並有效利用飽和食鹽水作為反應最佳溶劑,可達到大於95%的產率以及合理的非鏡像超越值60 % de 和鏡像超越值40 % ee。亦可利用其非均勻相特性,達到催化劑回收重複使用的效果。亦合成雙官能基中孔洞非均勻相有機催化劑,於相同反應條件進行不對稱aldol反應,在不影響產物鏡像選擇性下有效提升反應性。
    如何修飾有機部分使其能在高產率情況下,更有效提高反應的鏡像超越值(% ee)以及非鏡像超越值(% de),將是日後研究的主要重點。

    Mesoporous silica functionalized L-proline amide derivative was synthesized by the method of co-condensation with high overall chemical yield. The features of the organic-inorganic hybrid material were fully characterized with low angle X-ray XRD diffraction、SEM、TEM、nitrogen adsorption/desorption (BET, BJH) and solid state of 13C CP- and 29Si DPMAS NMR. We used it as a heterogeneous chiral organocatalyst in asymmetric aldol reaction. Comparable diastereo- and enantiosele-
    ctivity were obtained in aldol reaction with the counter homogeneous catalyst when the heterogeneous catalyst was used. We also studied the recycling of the uniformly heterogeneous catalyst and the result indicated that the mesopores of L-proline amide derived material were not destroyed by chemical decomposition during the repeated use as a catalyst. Finally we synthesized bi-funtionalized mesoporous silica nanosphere as new organocatalyst in asymmetric aldol reaction, in order to increase the reactivity by secondary functional group. The development of novel chiral organocatalysts and the incorporation onto the mesoporous materials are in progress and further applications will be reported.

    中文摘要 英文摘要 第一章 緒論................................................................................................................1 1-1 中孔洞分子篩簡介………………………………………………………...1 1-2 中孔洞分子篩的形成機制……………………………………………...…3 1-3 有機修飾中孔洞分子篩之合成方法與應用……………………………...4 1-4 有機不對稱催化反應的發展…………………………………………….14 1-5 研究動機………………………………………………………………….20 第二章 結果與討論………………………………………………………………..21 2-1 中孔洞非均勻相有機催化劑之合成與鑑定…………………………….21 2-1-1 中孔洞非均勻相有機催化劑之合成…………………………….21 2-1-2 中孔洞非均勻相有機催化劑之鑑定…………………………….24 2-2 利用中孔洞非均勻相有機催化劑進行不對稱aldol反應………………34 2-2-1 催化劑效應…………………………………………………….…34 2-2-2 溶劑效應………………………………………………………….38 2-2-3 取代基效應.....................................................................................40 2-3 中孔洞非均勻相有機催化劑回收再利用之探討……………………….41 2-4 雙官能基中孔洞非均勻相有機催化劑效應及反應機構之探討……….41 2-5 結論…………………………………………………………………….…58 第三章 實驗部分 3-1 分析儀器及基本實驗操作……………………………………………….59 3-2 實驗步驟及光譜數據…………………………………………………….60 3-2-1 有機矽烷製備步驟……………………………………………….60 3-2-2 MCM-41製備步驟……………………………………………….62 3-2-3 中孔洞非均勻相有機催化劑之通用合成步驟………………….63 3-2-4 雙官能基中孔洞非均勻相有機催化劑之通用合成步驟……….65 3-2-5 以中孔洞非均勻相有機催化劑進行不對稱aldol反應之一般合成 步驟………………………………………………………………70 參考文獻……………………………………………………………………….…….74 附錄 1H-NMR及13C-NMR光譜………………………………………………….…77

    1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 578.
    2. A. F. Cronstedt, Akad. Handl. Stockholm.,18 , 120 (1756).
    3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S.Beck, Nature, 1992, 359, 710.
    4. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    5. C. F. Cheng, W. Zhou, J. Klinowski, Chem. Phys Lett. 1996, 263, 247.
    6. D. Khushalani, A. D. Kuperman, G. A. Ozin, K.Tanaka, J. Garce, J.Olkan, J.Coombs, N. Adv. Mater.1995. 7. 842.
    7. C. Y. Chen, S. L. Burkett, H. X. Li, M. E. Davis, Microporous Mater.1993, 2 , 27.
    8. J. M. Kim, R. Ryoo, Bull. Korean Chem. Soc.
    9. J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew.Chem. Int.Ed, 1999, 38, 56-77.
    10. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J.Am.Chem.Soc, 1992, 114, 10834 -10843.
    11. Sayari, A. J. Phys. Chem. B 1998, 102, 5503-5510.
    12. N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350-353.
    13. M. H. Lim, C. F. Blanford, A. Stein, J. Am. Chem. Soc. 1997, 119, 4090-4091.
    14. Victor S.-Y. Lin, J. Am. Chem. Soc. 2005, 127, 13305-13311.
    15. Victor S.-Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 1826-1830.
    16. Price, P. M. ; Clark, J. H. ; Macquarrie, D. J. J. Chem. Soc., Dalton Trans. 2000, 101.
    17. Liu, C. J. ; Yu, W. Y. ; Li, S. G. ; Che, C. M. J. Org. Chem. 1998, 63, 7364.
    18. Sutra, P. ; Brunel, D. Chem. Commun. 1996, 2485.
    19. Diaz, J. F. ; Jr, K. B. Chem. Commun. 1997, 9, 61.
    20. W. A. Caralho. J of Molecular Catalysis A : Chemical 1999, 144, 91.
    21. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 1999, 121, 9611-9614.
    22. B. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, Chem. Mater. 1999, 11, 3302-3308.
    23. T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature 1999, 402, 867-871.
    24. M. Alvaro, M. Benitez, D. Das, B. Ferrer, H. GarcWa, Chem. Mater. 2004, 16, 2222-2228.
    25. C. Baleizao, B. Gigante, D. Das, M. Alvaro, H. GarcWa, A. Corma, Chem. Commun. 2003, 1860-1861.
    26. Job, A. ; Janeck, C. F. ; Bettray, W. ; Peters, R. ; Enders, D. Tetrahedron 2002, 58, 2253-2329.
    27. Corey, E. J. ; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986-2012.
    28. List, B. J. Am. Chem. Soc. 2000, 122, 2395.
    29. MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 1192.
    30. Smith, D. K. Org. Lett. 2001, 3, 3075.
    31. MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
    32. Bredig, G.;Fiske, W. S. Biochem. 1912, 7.
    33. Pracejus, H. Justus Liebigs Ann. Chem. 1960, 634, 9.
    34. Eder, U.;Sauer, G.;Wiechert, R. Angew. Chem. 1971, 83, 492.
    35. Hajos, Z. G. ; Oarrish, D. R. J. Org. Chem. 1947, 39, 1615.
    36. Jung, M. E. Tetrahedron 1976, 32, 3-31.
    37. Rajagopal, D. ; Moni, M. S. ; Swaminathan, S. Tetrahedron: Asymmetry 1999, 10, 1631-1634.
    38. Bahmanyar, S. ; Houk, K. N. J. Am. Chem. Soc. 2001, 123, 12911-12912.
    39. List, B. ; Lerner, R. A. ; Barbas, C. F. ; III J. Am. Chem. Soc. 2000, 122, 2395-2396.
    40. T. P. Brady, S. H. Kim, K. Wen, E. A. Theodorakis, Angew. Chem. 2004, 116, 757-760; Angew. Chem. Int. Ed. 2004, 43, 739-742.
    41. 王奕凱,邱宗明,李秉傑合譯,非均勻系催化原理與應用,國立編譯館,渤海堂文化公司,台北,1993.
    42. E. P. Barrett, L. S. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73(1951)373.
    43. S. J. Gregg. K. S. W. Sing. Adsorption, Surface Area and Porosity, 2nd Ed.,Academic press, New York, NY,(1982).
    44. Takabe, K.;Barbas III, C. F. J. Am. Chem. Soc. 2006, 128, 734.
    45. Taylor, M. S. ; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520-1543.

    無法下載圖示 本全文未授權公開
    QR CODE