簡易檢索 / 詳目顯示

研究生: 吳崇郎
論文名稱: 不同厚度與成長於不同基板上鑭鍶錳氧薄膜的磁區微結構與光譜研究
Effects of different thickness and substrates on magnetic microstructures and optical properties of La0.7Sr0.3MnO3 thin films
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 82
論文種類: 學術論文
相關次數: 點閱:265下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      我們研究成長於LaAlO3 基板上不同厚度(10~60 nm) La0.7Sr0.3MnO3薄膜的磁區微結構,及相同厚度(300 nm)但卻成長於不同基板(LaAlO3與SrTiO3)上的La0.7Sr0.3MnO3薄膜之磁區微結構與全頻光譜響應。
    La0.7Sr0.3MnO3和SrTiO3的晶格不匹配 (伸長應變相差~ + 0.74 %)遠小於La0.7Sr0.3MnO3和LaAlO3晶格不匹配 (壓縮應變相差~ - 2.5 %)。由磁力顯微術的研究發現,因為晶格不匹配,成長在SrTiO3基板的La0.7Sr0.3MnO3薄膜有團簇狀的磁區結構,而成長在LaAlO3基板的La0.7Sr0.3MnO3薄膜有迷宮狀的磁區結構。
    由全頻光譜研究,因為成長在SrTiO3基板的La0.7Sr0.3MnO3薄膜晶格扭曲較輕微,導致其在遠紅外光區,隨著溫度下降,彎曲振動模產生較輕微的分裂;且其在20 K時的居德權重較成長在LaAlO3基板的La0.7Sr0.3MnO3薄膜在10 K時的居德權重為大;而在中紅外光區, 成長在SrTiO3基板的La0.7Sr0.3MnO3薄膜的 電子躍遷能量及 的電子躍遷能量,皆較成長在LaAlO3基板的La0.7Sr0.3MnO3薄膜小。

    Abstract
    We have studied the magnetic microstructures and optical properties of La0.7Sr0.3MnO3 (LSMO) thin films. Magnetic images are critically dependent on the film thickness and structural strain induced by the SrTiO3 (STO) and LaAlO3 (LAO) substrates. The ferromagnetic domains of the LSMO film on LAO substrate become increasingly stronger with increasing film thickness from 10 nm to 60 nm. The 300-nm-thick LSMO film on STO dominated by tensile stress effect displays a cluster-like pattern, whereas the LSMO film on LAO under compressive stress show a maze-type domain pattern. Moreover, the optical conductivity spectra of the LSMO thin film on STO reveal (i) the reduced numbers of phonon fine structures, (ii) the enhancement of the Drude spectral weight at 20 K, and (iii) the decreasing energy positions of the and transitions in comparison with that on LAO substrate, indicating the local lattice distortion induced by the strain effect weakens upon the STO substrate.

    目 錄 中文摘要 …………………………………………………………… i 英文摘要 …………………………………………………………… ii 目錄 ………………………………………………………………… iii 表目錄 ………………………………………………………………iv 圖目錄 ……………………………………………………………… v 第一章 緒論 ………………………………………………………… 1 第二章 研究背景 …………………………………………………… 6 第三章 實驗儀器設備與基本原理 ……………………………… 14 3-1掃描探針顯微術…………………………………………… 14 3-2全頻光譜………………………………………………………17 第四章 實驗樣品特性 …………………………………………… 34 4-1 樣品製備方法與結構介紹……………………………… 34 4-2磁性量測………………………………………………………35 第五章 實驗結果與討論 ………………………………………… 41 5-1磁力顯微術研究……………………………………… 41 5-2全頻光譜研究………………………………………… 45 第六章 結論與未來展望 ………………………………………… 80 參考文獻 …………………………………………………………… 83

    參考文獻
    [1] G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950).
    [2] J. H. Van Santen and G. H. Jonker, Physica 16, 559 (1950).
    [3] C. Zener, Phys. Rev. 81, 440 (1951).
    [4] M. N. Baibich, Phys. Rev. Lett. 61, 2427 (1988).
    [5] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
    [6] S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillip, and R. Ramech, Appl. Phys. Lett. 64, 3045 (1994).
    [7] http://www.nano.com.tw/nano literature,文章作者:鄭凱安
    [8] 周雄,吳俊斌,物理雙月刊26卷第4期,p.581 (2004).
    [9] Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
    [10] M. Uehara, S. Mori, C. H. Chen, and S. W. Cheong, Nature 399, 560 (1999).
    [11] Liuwan Zhang, Casey Israel, Amlan Biswas, R. L. Greene, and Alex de Lozanne, science 298, 805 (2002).

    [12] Zhi-hong Wang, G. Cristiani, H. U. Habermeier, Zhen-Rong Zhang, and Bao-Shan Han, J. Appl. Phys. 94, 5417 (2003).
    [13] C. Kwon, M. C. Robson, K. C. Kim, J. Y. Gu, S. E. Lofland, S. M. Bhagat, Z. Trajanovic, M. Rajeswari, T. Venkatesan, A. R. Kratz, R. D. Gomez, and R. Ramesh, J. Magn. Magan. Mater. 172, 229 (1997).
    [14] Joonghoe Dho, Y. N. Kim, Y. S. Hwang, J. C. Kim, and N. H. Hur, Appl. Phys. Lett. 82, 1434 (2003).
    [15] 張道宜,長庚大學電子研究所碩士論文,民國93年6月。
    [16] G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1983).
    [17] G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [18] 掃描式探針顯微鏡檢測技術基本原理與操作模式介紹,Product Guide。
    [19] Instruction Manual Solver P47, Product Guide, http://www.ndmdt.ru
    [20] F. Wooten, Optical properties of Solids, Academic, New York (1972).
    [21] NT-MDT Corp., Application Notes, http://www.ndmdt.ru
    [22] Instruction Manual Solver HV, Product Guide, http://www.ndmdt.ru
    [23]呂坤陞,國立台灣師範大學物理研究所碩士論文,民國94年6月。
    [24] L. M. Wang, H. H. Sung, B. T. Su, H. C. Yang, and H. E. Horng, J. Appl. Phys. 89, 6834 (2001).
    [25] H. Y. Hwang, S. –W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
    [26] H. L. Ju, Kannan M. Krishnan, and D. Lederman, J. Appl. Phys. 83, 7073 (1997).
    [27] G. Van Tendeloo, O. I. Lebedev, and S. Amelinckx, J. Magn. Magn. Mater. 211, 73 (2000).
    [28] Yeong-ah Soh, G. Aeppli, N. D. Mathur, and M. G. Blamire, J. Appl. Phys. 87, 6743 (2000).
    [29] I. Fedorov, J. Lorenzana, P. Dore, G. De Marzi, P. Maselli, P. Calvani, S. W. Cheong, S. Koval, and R. Migoni, Phys. Rev. B 60, 11875 (1999).
    [30] J. H. Jung, K. H. Kim. T. W. Noh, E. J. Choi, and Jaejun Yu, Phys. Rev. B 57, R11043 (1998).
    [31] H. J. Lee, J. H. Jung, Y. S. Lee, J. S. Ahn, and T. W. Noh, Phys. Rev. B 60, 5251 (1999).
    [32] Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, Phys. Rev. B 55, 4206 (1997).

    QR CODE