簡易檢索 / 詳目顯示

研究生: 車吉平
Chi-Ping Che
論文名稱: 半導體奈米帶與奈米線之光譜研究
Optical studies of semiconducting nanobelts and nanowires
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 132
中文關鍵詞: 奈米帶奈米線磷化鎵三氧化二鎵光學聲子
英文關鍵詞: nanobelt, nanowire, gallium phosphide, gallium oxide, optical, phonon
論文種類: 學術論文
相關次數: 點閱:307下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們探討三氧化二鎵奈米線、奈米帶、以及單一磷化鎵奈米線的表面結構、電性、與光譜特性,擴展先前群集奈米線的量測至奈米帶與單一奈米線的研究。
    在三氧化二鎵奈米結構的研究中,首先,由全頻光譜的分析,我們發現11個紅外光活性振動模以及4個電子吸收帶,包括相近於塊材能隙的吸收峰。由拉曼散射光譜的分析,我們發現奈米帶的拉曼活性振動模與奈米線相近,並且沒有明顯的共振效應;隨著樣品的溫度升高,這些拉曼振動模的頻率往低頻偏移以及半高寬變寬,此變化的幅度與其他三五族半導體比較,顯得異常的小。
    在單一磷化鎵奈米線的拉曼散射光譜研究中,我們發現其拉曼活性振動模與單晶相較之下,其頻率會往低頻偏移,並且形狀較為不對稱,我們以聲子侷限效應、雷射的熱效應、與電漿子耦合效應解釋此現象,並且發現電漿子耦合效應的模擬結果最能符合實驗結果。由偏振拉曼光譜的分析,我們發現入射光電場偏振方向與拉曼振動模強度之關係違背了馬勒斯定律,我們推測由於奈米線的直徑對長度之比值極小,這種結構的獨特性導致了異常的偏振拉曼光譜特徵。由偏振螢光光譜的分析,我們發現當入射光及散射光電場偏振方向與樣品長軸一致時,磷化鎵奈米線於2.16 eV處呈現一顯著的螢光訊號。

    We present the local scanning probe microscopy and optical spectroscopic measurements of Ga2O3 and GaP nanostructures. By simultaneously mapping topography and electrostatic force on a surface, the local electrical properties of these nanomaterials can be correlated with their surface structure. Optical reflectance and transmittance spectra of Ga2O3 nanostructures reveal eleven infrared-active phonons and four electronic absorption bands. The phononic Raman spectra of Ga2O3 nanobelts are similar to those of nanowires. Interestingly, the resonant and temperature-dependent effects in the phonon response of Ga2O3 nanostructures are negligible as compared with other Ⅲ-Ⅴ semiconductoring nanowires . In addition, the peak shift and the broadening of the linewidth as well as asymmetric shape observed in LO phonon of isolated GaP nanowire agree with those calculated on the basis of the LO phonon-plasmon model. Moreover, the polarized Raman and photoluminescence (PL) spectra show strong angular dependence. The orientation dependences reveal maximum intensity of all Raman modes and PL excitation peak when the nanowire is aligned parallel to the polarization of the incident laser light.

    第一章 緒論 ………………………………………………………… 1 第二章 研究背景 …………………………………………………… 5 第三章 實驗儀器設備及其基本原理 …………………………… 15 3-1 傅立葉轉換紅外線光譜儀 ……………………………… 15 3-2 光柵式分光光譜儀 ……………………………………… 18 3-3 反射、穿透光譜量測原理 ……………………………… 20 3-3-1 電磁波在介質中的傳遞 ………………………… 20 3-3-2 克拉馬-克羅尼關係式 …………………………… 22 3-3-3 羅侖茲模型 ……………………………………… 24 3-4 雷射拉曼散射光譜儀 …………………………………… 24 3-5 拉曼散射原理 …………………………………………… 26 3-6 掃描探針顯微術 ………………………………………… 27 3-6-1 力學上的量測 ………………………………… 30 3-6-2電學上的量測 ………………………………… 33 第四章 實驗步驟 ……………………………………………… 47 4-1 樣品製程 ……………………………………………… 47 4-2 樣品的基本特性 ……………………………………… 48 3-3 群論計算 ……………………………………………… 50 4-4 表面結構與電性量測 ………………………………… 52 第五章 實驗結果與討論 ………………………………………… 72 5-1 全頻光譜 ……………………………………………… 72 5-2 雷射拉曼散射光譜 …………………………………… 73 5-2-1 三氧化二鎵奈米結構 ………………………… 73 5-2-2 磷化鎵奈米線 ………………………………… 76 5-2-3 聲子侷限效應 ………………………………… 78 5-2-4 雷射的熱效應 ………………………………… 80 5-2-5 電漿子耦合效應 ……………………………… 81 5-3 偏振拉曼散射光譜 …………………………………… 90 5-4 偏振螢光光譜 ………………………………………… 92 第六章 結論與未來展望 ……………………………………… 131

    [1] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
    [2] G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [3] A. P. Alivisatos, Science 271, 933 (1996).
    [4] Michael A. Stroscio and Mitra Dutta, Phonons in nanostructures, Cambridge, New York, 2001.
    [5] R. Fuchs K. L. Kliewer, Phys. Rev. 140, A2076 (1965).
    [6] G. Fasol, M. Tanaka, H. Sakaki, and Y. Horikosh, Phys. Rev. B 38, 6056 (1988).
    [7] Yves Martin and H. Kumar Wickramasinghe, Appl. Phys. Lett. 64, 2498 (1994).
    [8] Thomas Hantschel, Eugene M. Chow, Dirk Rudolph, and David K. Fork, Appl. Phys. Lett. 81, 3070 (2002).
    [9] Ichiro Tanaka, I. Kamiya, and Sakaki, Appl. Phys. Lett. 74, 844 (1999).
    [10] S. Ono, M. Takeuchi, and T. Takahashi, Ultramicroscopy 91, 127 (2002).
    [11] Larry A. Nagahara, Islamshah Amlani, Justin Lewenstein, and Raymond K. Tsui, Appl. Phys. Lett. 80, 3826 (2002).
    [12] Douglas A. Skoog and James J. Leary合著;林敬二、林宗義編譯。儀器分析。上冊。增訂第四版。美亞書版股份有限公司,民國60年。
    [13] Eugene Hecht, Optics, Addison Wesley, 3rd ed., New York, 1998.
    [14] 李冠卿。近代光學。臺北市:聯經出版社,民國77年。
    [15] A. Zibold, H. L. Liu, S. W. Moore, J. M. Graybeal, and D. B. Tanner, Phys. Rev. B 53, 11734 (1996).
    [16] Instruction Manual Solver P47, Product Guide, http://www.ntmdt.ru
    [17] 掃描式探針顯微鏡檢測技術基本原理與操作模式介紹,Product Guide。
    [18] NT-MDT Corp., SPM Introduction, http://www.ntmdt.ru
    [19] V. J. Morris, A. R. Kirby, and A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London, 1999.
    [20] Nanosensor Corp., Product Guide, http://www.nanosensors.com
    [21] Mikro Masch Corp., Product Guide, http://www.spmitips.com
    [22] 黃英碩,「掃描穿隧顯微術的原理及應用」,科儀新知18卷3期(中華民國85年12月):頁4-13。
    [23] Y. Jeliazova and R. Franchy, Surface Science 502-503, 51 (2002).
    [24] I. Binet, D. Gourier, and C. Minot, J. Solid State Chem. 113, 420 (1994).
    [25] Naoyuki Ueda, Hideo Hosono, Ryuta Waseda, and Hiroshi Kawazoe, Appl. Phys. Lett. 71, 933 (1997).
    [26] Laurent Binet and Didier Gourier, J. Phys. Chem. Solids 59, 1241 (1998).
    [27] Holger T. Grahn, Introduction to Semiconductor Physics, World Scientific, Singapore, 1998.
    [28] H. Fu, V. Ozolins, and Alex Zunger, phys. Rev. B 59, 2881 (1999).
    [29] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
    [30] William G. Fateley, Francis R. Dollish, Neil T. McDevitt, and Freeman F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations - The Correlation Method, Wiley-Interscience, New York, 1972.
    [31] NCHC Chemistry Website, http://saturn.nchc.gov.tw:9091/cds/ index. Html
    [32] H. H. Tippins, Phys. Rev. 140, A316 (1965).
    [33] M.Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
    [34] Puspashree Mishra and K. P. Jain, Phys. Rev. B 62, 14790 (2000).
    [35] R. Fuchs and K. L. Kliewer, J. Opt. Soc. Am. 58, 319 (1968).
    [36] R. Ruppin and R. Englman, Rep. Prog. Phys. 33, 144 (1970).
    [37] D. A. Kleinman and W. G. Spitzer, Phys. Rev. 118, 110 (1960).
    [38] 林大鈞,國立台灣師範大學物理研究所碩士論文,93年1月。
    [39] H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
    [40] I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).
    [41] A. S. Barker and JR., Phys. Rev. 165, 917 (1968).
    [42] H. Fu, V. Ozolins, and Alex Zunger, Phys. Rev. B 59, 2881 (1999).
    [43] S. Piscanec, M. Cantoro, and A. C. Ferrari, Phys. Rev. B 68, 241312 (2003).
    [44] M. Ramsteiner, O. Rrandt, and K. H. Ploog, Phys. Rev. B 58, 1118 (1998).
    [45] National Compound Semiconductor Roadmap, http://www.onr.navy. mil/sci_tech/information/312_electronics/ncsr/Default.asp
    [46] 私立淡江大學李明憲老師研究室。
    [47] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000).
    [48] Jun Zhang and Lide Zhang, Solid State Commum. 122, 493 (2002).
    [49] M. V. Hobden and J. P. Russell, Phys. Lett. 13, 39 (1964).
    [50] S. Hayashi and H. Kanamori, Phys. Rev. B 26, 7079 (1982).
    [51] I. M. Tiginyanu, G. Irmer, J. Monecke, and H. L. Hartnagel, Phys. Rev. B 55, 6739 (1997).
    [52] M.Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).

    QR CODE