簡易檢索 / 詳目顯示

研究生: 李昆學
Kung-Hsueh Lee
論文名稱: 肺癌新穎抗癌藥物OSU03013之蛋白質體學研究及生長抑制之分子機制探討
Molecular mechanisms of cytotoxicity and proteomics approach for potential anti-cancer drug OSU03013 in lung cancer
指導教授: 王憶卿
Wang, Yi-Ching
阮雪芬
Juan, Hsueh-Fen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 肺癌二維電泳蛋白質體學OSU03013內質網壓力
英文關鍵詞: lung cancer, 2D, proteomics, OSU03013, endoplasmic reticulum-mediated apoptosis, 2DE-MS, cAMP-dependent protein kinase, Wnt/β-catenin, 2DE, ER, PKA, apoptosis
論文種類: 學術論文
相關次數: 點閱:258下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌是國人最重要的癌症致死原因。肺癌病人通常在腫瘤切除後五年內死於癌症復發或腫瘤轉移,大部分接受化學治療的肺癌患者,常常因為對傳統化療藥物產生抗性而治療失敗,這些傳統化療藥物的副作用也對病人造成極大的痛苦,因此需要新藥的發展以提升肺癌患者的治癒率。近年來COX-2的抑制劑,celecoxib,它的結構修飾物OSU03013,在攝護腺、卵巢癌、乳癌等,已經被研究有抗癌的效果,並且是以AKT的訊息傳遞路徑來達到抑制攝護腺癌之生長。因此,本研究目標即是探討OSU03013在肺癌細胞之毒殺作用及其細胞學鑑定,之後利用二維電泳、質譜分析等蛋白質體學的方法找尋藥物的目標及影響蛋白,並分析這些蛋白/訊息傳遞路徑與細胞生長調控的關係。
    在肺癌細胞株A549、CL1-1、H1435的IC50測試實驗中,本研究發現OSU03013具有高度細胞毒殺作用,而此藥物對於肺正常細胞並沒有此現象,所以我們認為它是一個治療肺癌很有潛力的藥物。在細胞學鑑定實驗中,我們發現OSU03013會造成細胞週期停滯在間期一 (Gap 1, G1 arrest) 的現象;OSU03013在肺癌細胞同時也藉由內質網壓力效應去引發細胞凋亡 (apoptosis)。在蛋白質體學的實驗中,我們發現此藥物在肺癌細胞之目標蛋白包含了cAMP-dependent protein kinase inhibitor β form (PKIB, 激酶抑制蛋白)、數種G proteins (G蛋白)、數種Heat-shock proteins (熱休克蛋白)、Antioxidant enzymes (去氧化蛋白)、及其他調控細胞生長、代謝的蛋白;這些蛋白有許多皆以Western blot (西方點墨法) 確認。由於OSU03013在肺癌細胞中因為PKIB的過度活化,我們預測其下游蛋白cAMP-dependent protein kinase (PKA) 的蛋白表現量在處理藥物後會下降,以抑制PKA的訊息傳導路徑,其中一條路徑抑制了Wnt/-catenin活性,所以抑制了肺癌細胞生長;而並非如同在攝護腺癌中,是透過AKT傳導路徑來抑制癌細胞的生長。本研究為首篇在肺癌細胞中偵測OSU03013藥物之抑制癌細胞潛力,及其抑癌分子機轉之研究。

    Purpose: Lung cancer is the leading cause of cancer death in many countries including Taiwan. The majority of lung cancer patients receiving the chemo-therapy often fail because of drug resistance. In addition, patients suffer from side effects of current chemotherapies. Therefore, developing the new therapeutic drugs is important and can greatly improve the cure rate of the lung cancer. Background: OSU03013 is a modified compound from celecoxib, which is a COX-2 inhibitor used for arthritis treatment. OSU03013 has been shown to also act as an anti-cancer drug for prostate, breast, and ovary cancer though inhibition of AKT-mediated singling in cell and animal models. Study design: To investigate whether OSU03013 can be a potential drug for lung cancer treatment and to identify the molecular targets for OSU03013, we (1) screened the A549, CL1-1, and H1435 lung cancer cell lines for their IC50 treated with OSU03013, (2) investigated the cell cycle after OSU03013 treatment by flow cytometry, (3) studied the mechanism of cell apoptosis related to cytotoxicity effects of OSU03013, (4) identified target/effector proteins of OSU03013 by two-dimensional electrophoresis and mass-spectrometry (2DE-MS), and (5) confirmed the selected proteins by Western blot analysis. Results: The cytotoxicity of the potential anti-cancer drug OSU03013 was more efficient than the traditional drugs such as cisplatin in A549, CL1-1, and H1435 lung cancer cell lines. OSU03013 caused cell cycle arrest in G1 phase and apoptosis through endoplasmic reticulum stress. Target and effector proteins identified by 2DE-MS including cAMP-dependent protein kinase inhibitor β form (PKIB), several G proteins, some heat-shock proteins, few antioxidant enzymes, and several proteins controlling the cell growth and metabolism. Many of them were confirmed by the Western blot analyses. Conclusion: The proteins which were up- or down-regulated after OSU03013 treatment, including proteins involved in cell growth controls, signal pathways, and damage response pathways. For example, PKIB is up-regulated after OSU03013 treatment, it affects the cAMP-dependent protein kinase A pathway to inhibit the cell growth through inhibition of Wnt/-catenin pathway, which often over-activation in lung cancer. More cell biology and protein functional analyses will help us to gain insights of molecular mechanisms for the anti-cancer effects of OSU03013.

    壹、中文摘要……………………………………………………… 1 貳、英文摘要……………………………………………………… 3 叁、緒論…………………………………………………………… 5 一、研究背景…………………………………………………… 5 1. 肺癌治療現況…………………………………………… 5 2. 新穎抗癌藥物OSU03013……………………………… 5 3. 細胞 apoptosis 的分子機制…………………………… 7 4. 藥物標的蛋白的研究…………………………………… 8 二、研究目的……………………………………………………… 13 肆、研究材料與方法………………………………………………… 14 一、研究材料…………………………………………………… 14 1. 肺癌細胞株……………………………………………… 14 2. Celecoxib的結構修飾物OSU03013…………………… 14 二、研究方法…………………………………………………… 15 1. 細胞培養………………………………………………… 15 2. 藥物處理之細胞毒性分析……………………………… 15 3. 細胞週期分析…………………………………………… 16 4. phosphatidylserine (PS) 染色以偵測早期細胞凋亡…… 16 5. 細胞株蛋白質萃取……………………………………… 17 6. 蛋白質定量……………………………………………… 17 7. 蛋白質體學……………………………………………… 18 8. 西方點墨 (Westernblot)………………………………… 21 9. 模擬分子對接 (molecular docking)……………………… 22 伍. 結果……………………………………………………………… 23 1. 藥物OSU03013處理肺癌細胞株A549、CL1-1及H1435… 23 的細胞形態 2. 利用藥物OSU03013處理正常肺細胞株MRC5及肺癌…… 23 細胞株A549、CL1-1及H1435 並探討其藥物毒殺性 3. OSU03013導致細胞週期在間期一停滯 (Gap 1, G1 arrest)… 23 及早期的細胞凋亡 (early apoptosis) 4. 肺癌細胞株A549、H1435、CL1-1處理OSU03013引發… 24 內質網壓力效應(endoplasmic reticulum, ER stress) 5. 利用蛋白質體學方法來尋找藥物處理細胞後的目標……… 25 及影響蛋白 6. 藥物OSU03013與PKA的分子對接 (Molecular Docking)… 26 陸、討論……………………………………………………………… 28 柒、結論與未來工作………………………………………………… 33 捌、附表……………………………………………………………… 35 玖、附圖……………………………………………………………… 42 拾、參考文獻………………………………………………………… 55 拾壹、附 錄………………………………………………………… 61

    Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods. 1982;6:317-39.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935-9.
    Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 2006;13:363-73.
    Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science. 2005;310:1504-10.
    Department of Health. Executive Yuan, Republic of China (Taiwan). Statistics of causes of death (2006).
    ExPASy Molecular Biology Server on World Wide web URL: http://www.expasy.ch/
    Fadok VA, de Cathelineau A , Daleke DL, Henson PM, Bratton DL. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 2001;276:1071-7.
    Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 2001;3:E255-63.
    Fukada K, Takahashi-Yanaga F, Sakoguchi-Okada N, Shiraishi F, Miwa Y, Morimoto S, Sasaguri T. Celecoxib induces apoptosis by inhibiting the expression of survivin in HeLa cells. Biochem. Biophys. Res. Commun. 2007;357:1166-71.
    Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell. 1999;97:395-406.
    Haynes PA, Gygi SP, Figeys D, Aebersold R. Proteome analysis: biological assay or data archive. Electrophoresis. 1998;19:1862-71.
    Hirt UA, Leist M. Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ. 2003;10:1156-64.
    Hoffmann PR, deCathelineau AM, Ogden CA, Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA, Henson PM. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell. Biol. 2001;155:501-4.
    Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995;80:225-36.
    Keough T, Youngquist RS, Lacey MP. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1999;96:7131-6.
    Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J. 2003;17:1573-5.
    Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, Huntsman D, Yorida E, Emerman J, Pollak M, Dunn SE. Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res. 2005;7:212-4.
    Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 1999;17:676-82.
    Loo JA, Brown J, Critchley G, Mitchell C, Andrews PC, Ogorzalek Loo RR. High sensitivity mass spectrometric methods for obtaining intact molecular weights from gel-separated proteins. Electrophoresis. 1999;20:743-8.
    Masai I, Yamaguchi M, Tonou-Fujimori N, Komori A, Okamoto H. The hedgehog-PKA pathway regulates two distinct steps of the differentiation of retinal ganglion cells: the cell-cycle exit of retinoblasts and their neuronal maturation. Development. 2005;132:1539-53.
    Mehmet H. Caspases find a new place to hide. Nature. 2000;403:29-30.
    Merril CR, Switzer RC, Van Keuren ML. Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Natl. Acad. Sci. U.S.A. 1979;76:4335-9.
    Munoz LE, Frey B, Pausch F, Baum W, Mueller RB, Brachvogel B, Poschl E, Rödel F, von der Mark K, Herrmann M, Gaipl US. The role of annexin A5 in the modulation of the immune response against dying and dead cells. Curr. Med. Chem. 2007;14:271-7.
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403:98-103.
    Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 2003;22:1180-7.
    O’Farrel P. High resolution two dimensional electrophoresis of proteins. J. Biol. Chem. 1975;250: 4007-21.
    Patterson SD, Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995;16:1791-814.
    Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 2004;11:372-80.
    Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. Lung Cell Mol. Physiol. 2004;286:L49-67.
    Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2002;2:965-75.
    Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat. Rev. Mol. Cell Biol. 2001;2:760-8.
    Song X, Lin HP, Johnson AJ, Tseng PH, Yang YT, Kulp SK, Chen CS. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst. 2002;94:545-6.
    Swiderek KM, Davis MT, Lee TD. The identification of peptide modifications derived from gel-separated proteins using electrospray triple quadrupole and ion trap analyses. Electrophoresis. 1998;19:989-97.
    Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A. 2001;98:11598-603.
    Tong Z, Wu X, Chen CS, Kehrer JP. Cytotoxicity of a non-cyclooxygenase-2 inhibitory derivative of celecoxib in non-small-cell lung cancer A549 cells. Lung Cancer. 2006;52:117-24.
    Van Patten SM, Donaldson LF, McGuinness MP, Kumar P, Alizadeh A, Griswold MD, Walsh DA. Specific testicular cellular localization and hormonal regulation of the PKIalpha and PKIbeta isoforms of the inhibitor protein of the cAMP-dependent protein kinase. J. Biol. Chem. 1997;272:20021-9.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995;16:1090-4.
    Watanabe N, Broome M, Hunter T. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J. 1995;14:1878-91.
    Wilikins M, Gooley A. Protein Identification in proteome projects. In:proteome Research: New Frontiers in Functional Genomics. 1997.pp. 35-64.
    Wilkins MR, Gasteiger E, Tonella L, Ou K, Tyler M, Sanchez JC, Gooley AA, Walsh BJ, Bairoch A, Appel RD, Williams KL, Hochstrasser DF. Protein identification with N and C-terminal sequence tags in proteome projects. J. Mol. Biol. 1998;278:599-608.
    Wilkins MR, Gasteiger E, Wheeler CH, Lindskog I, Sanchez JC, Bairoch A, Appel RD, Dunn MJ, Hochstrasser DF. Multiple parameter cross-species protein identification using MultiIdent--aworld-wide web accessible tool. Electrophoresis. 1998;19:3199-206.
    Williamson P, Schlegel RA. Hide and seek: the secret identity of the phosphatidylserine receptor. J. Biol. 2004;3:14.
    Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, Shaw YJ, Kulp SK, Chen CS. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res. 2004;64:4309-18.
    Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, Chen CS. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst. 2002;94:1732-3.

    QR CODE