簡易檢索 / 詳目顯示

研究生: 林政輝
論文名稱: 國中生討論數樣式關係時表達理由能力之成長探究
指導教授: 林福來
Lin, Fou-Lai
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 118
中文關鍵詞: 數樣式表達理由能力
英文關鍵詞: number pattern
論文種類: 學術論文
相關次數: 點閱:160下載:56
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目標為:在討論的學習環境下,探討國中生進行數樣式關係論證,為自己的觀點或結論說明理由時,表達能力之成長情形。
    本研究為敘述性研究,採用質的研究方法。研究對象是以方便抽樣的方式,選取研究者任教的班級中四男二女共六位自願的國一學生。研究時以三人為一組的小組討論方式,進行三次教學訪談,分別要求學生寫下最好的理由、最能說服別人的理由以及最符合數學形式的理由。根據研究文獻與英國SMP教材,設計四個論證數樣式規律的問題,將其中兩題讓學生重複作答,用以對照學生是否在表達理由的能力上有成長。紀錄學生的作答結果、學生間互動討論的過程、教師介入的結果以及隨後的再次作答,用詮釋性研究的方法進行分析。
    研究結果發現,六位學生作答時說明理由的類型共有兩類:經驗論與敘述關鍵性質。而表達能力的發展,會有五個階段:理解起始資訊、經驗論、描述關鍵性質、批判經驗論證、形式化,而且是一種動態、折返的歷程。研究也觀察到在討論的學習環境中,教師與同儕對於學習有四種影響:提供不同的表達理由類型、演示關係、引發學習者使用文字符號、教師主導學生說明理由的信念。
    根據這些結果,本研究對發展國中學生說明理由時的表達能力,提出了三點建議:小組討論有助於表達理由的能力之成長、批判經驗論證有助於學生發展形式化地表達理由的能力、教學上不能強求學生使用形式論證的方式

    目 次 第壹章 緒論…………………………………………………….……..1 第一節 研究動機…………………………………………….…….1 第二節 研究背景…………………………………………….…….2 第三節 研究目的與研究問題……………………………………..4 第四節 名詞定義…………………………………………….…….4 第貳章 文獻探討…………………………………………….………..6 第一節 證明的教育觀點…………………………………………..6 第二節 數與數樣式概念的特質…………………………………..8 第三節 數樣式關係的論證活動…………………………………11 第四節 數學學習的成長過程……………………………………16 第五節 社會互動與學習…………………………………………19 第參章 研究方法…………………………………………….………22 第一節 研究設計…………………………………………….…...22 (一) 研究的情境…………………………………………….…23 (二) 研究者的角色………………………………………….…23 (三) 研究對象與抽樣方式…………………………………….23 (四) 研究工具………………………………………….………24 (五) 資料收集方式………………………………………….…25 (六) 資料分析方式………………………………………….…25 (七) 研究設計的可行性………………………………………25 第二節 研究歷程………………………………………….……..27 第三節 研究限制………………………………………….……..28 第肆章 資料分析…………………………………………….………29 第一節 各種表達理由的類型……………………………………29 第二節 學生的重要成長歷程……………………………………47 第伍章 綜合討論…………………………………………………….89 第一節 學生表達理由的類型分析………………………………89 第二節 表達理由的能力之發展…………………………………90 第三節 教師與同儕對於學習的影響……………………………97 第陸章 結論與建議………………………………………………...101 第一節 結論……………………………………………………..101 第二節 建議……………………………………………………..103 參考文獻………………………………………………………………106

    參考文獻
    中文部分
    王文科.(民87). 教育研究法(四版). 台北: 五南圖書出版有限公司。
    王文科.(民90).教育研究法(五版). 台北: 五南圖書出版公司
    谷瑞勉譯. (Berk, L. E. 和Winsler, A.著). 鷹架兒童的學習:維高斯基與幼兒教育. 台北: 心理出版社.
    吳慧貞.(民86). 幾何證明探究教學之研究. 台北: 國立台灣師範大學數學研究所數學教育組碩士論文.
    林永發.(民87). 在動態幾何環境中培養命題式擬題能力的研究. 台北: 國立台灣師範大學數學研究所數學教育組碩士論文.
    詹玉貞.(民88). 波利亞的解題步驟對國中數學資優生學習幾何證明成效之研究. 台北:國立台灣師範大學科學教育研究所數學教育組碩士論文.
    邱美虹.(2000). 概念改變研究的省思與啟示. 科學教育學刊, 第八卷第一期, 1-34.
    林福來、吳家怡、李源順、鄭英豪、連秀鑾、林佳蓉、朱綺鴻、陳姿妍、林春慧.(民84). 數學證明的了解 (II). 台北: 國科會專題研究計劃成果報告NSC 84-2511-S-003-072.
    林福來、譚克平、吳家怡、陳創義、林佳蓉、郝曉青、陳英娥、楊凱琳、林政輝、李宜芬、梁蕙如、高智馨.(民90). 青少年的數學概念學習研究─子計劃十四:青少年數學論證能力發展研究(1/3).台北:國科會專題研究計劃成果報告NSC 89-2511-S-003-103.
    西文部分
    Alibert, D. & Thomas, M.(1991). Research on mathematical proof. In Tall, D.(Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
    Balacheff, N.(1988). Aspects of proof in pupils’ practice of school mathematics. In Pimm, D.(Ed.), Mathematics, teachers and children. London: Hodder & Stoughton.
    Battista, M. T. & Clements, D. H.(1995). Geometry and proof. The mathematics teacher, 88(1), 48-54.
    Bishop, J. (2000). Linear geometric number patterns: middle school students’ strategies. Mathematics Education Research Journal, vol. 12, no. 2, 107-126.
    De Lange, Y.(1996). Using and applying mathematics in education. In Bishop, A. J. et al.(Eds.), International Handbook of Mathematics Education. The Netherlands, Kluwer Academic Publishers.
    Dreyfus, T.(1990). Advanced mathematical thinking. In Nesher, P. & Kilpatrick, J.(Ed.), Mathematics and Cognition.
    Dreyfus, T.(1991). Advanced mathematical thinking processes. In Tall, D.(Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
    Dreyfus, T.(1999).Why Johnny can’t proof ( with apologies to Morris Kline). Educational Studies in Mathematics, 38 : 85-109.
    Duval, R.(1991). Structure du raisonnement deductif et apprentissage de la demonstration. Educational Studies in Mathematics, 22, 233-261.
    Dubinsky, E.(1991). Reflective abstraction in advanced mathematical thinking. In Tall, D.(Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
    Dubindky. E. & Tall, D.(1991).Advanced mathematical thinking and computer. In Tall, D.(Ed.), Advanced Mathematical Thinking.
    Gray, E. M. & Tall, D.(1994). Duality, ambiguity, and flexibility: a "proceptual" view of simple arithmetic. Journal for Research in Mathematics Education; v25 n2 116-40
    Gray et al(1999). Knowledge construction and diverging thinking in elementary & advanced mathematics. Educational Studies in Mathematics, 38,111-133.
    Harel, G. & Kaput, J.(1991). The role of conceptual entities and their symbols in building advanced mathematical thinking. In Tall, D.(Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
    Hanna, G.(1989).More than formal proof. For the learning of mathematics, 9 , 20-23.
    Hanna, G.(1990).Some pedagogical aspects of proof. In Winchester, I.(Ed.) Creativity, thought and mathematical proof. Interchange, Canada, Vol. 21, No.1
    Hanna, G.(1991). Mathematical proof. In Tall, D.(Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
    Hanna, G.(1995).Challenges to the important of proof. For the Learning of Mathematics, 15(3), p.42-49.
    Healy, L. & Hoyles, C.(1998). Justifying and proving in school mathematics. Technical report the national survey, Institute of Education, University of Landon.
    Healy, L., & Hoyles, C. (2000a). A study of proof conceptions in algebra. Journal for Research in Mathemtics Education.
    Healy, L., & Hoyles, C. (2000b). Longitudinal proof project:Year 8 survey. Institute of Education, University of Landon.
    Hoyles, C., & Healy, L.(1998).Linking informal argumentation with formal proof through computer-integrated teaching experiments. Proc. PME 24 Institute of Education, University of London, UK. v.3, p.105-112.
    James. N. & Mason, J.(1982). Towards recording. In Skemp, R. R.(Ed.), Visible Language, pp. 249-258.
    Janvier, C.(1996). Modeling and the Initiation into Algebra. In Bednarz, N. , Kieran, C. & Lee, L.(Ed.), Approaches to Algebra.
    Kieran, C. (1989). The early learning of algebra:a structural perspective. In Wagner, S. & Kieran, C. (Ed.), Research issues in the learning and teaching of algebra. Reston, Va:The Council.
    Kieran, C.(1990).Cognitive processes involved in learning school algebra. In Nesher, P. & Kilpatrick, J.(Ed.), Mathematics and Cognition.
    Kieren, T, E. & Pirie, S. E. B.(1992). The answer determines the question. Interventions and the grouth of mathematical understanding. Proceedings sixteenth Psychology of Mathematics Education conferences,
    Laborde, C.(1990).Language and mathematics. In Nesher, P. & Kilpatrick, J.(Ed.), Mathematics and Cognition.
    Mason, J., Burton, L. &Stacey, K.(1982). Thinking mathematically. Inc., Addison-Wesley Publishing Company.
    Mason, J.(1996). Expressing generality and roots of algebra. In Bednarz, N.、Kieran, C. & Lee, L.(Ed.), Approaches to Algebra, Chap. 5, p65-86.
    Miwa, T.(2001). Crucial issue in teaching of symbolic expressions. Tsukuba Journal of Educational Study in Mathematics. Vol. 20, p.1-22.
    NCTM.(1989). Curriculum and Evaluation Standards for School Mathematics. Reston, Va:The Council.
    NCTM.(2000). Principles and standards for school mathematics. Reston, Va :The Council.
    Patton, M. Q.(1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, CA: Sage Publications, Inc.
    Pirie, S. E. B., & Kieren, T. E.(1991). ‘Folding back : A dynamic recursive theory of mathematical understanding.’ In F. Furinghetti(Ed.), Proceedings fifteenth Psychology of Mathematics Education conferences, Assisi.
    Pirie, S. & Martin, L.(2000). The role of collecting in the growth of mathematical understanding. Mathematics Education Research Journal, vol. 12, No. 2, 127-146.
    Pirie, S. E. B., & Kieren, T. E.(1994).Growth in mathematics understanding : how can we characterise it and how can we represent it? Educational Studies in Mathematics, 26 , p.165-190.
    Pirie, S. E. B. & Kieren, T. E.(1989). A recursive theory of mathematical understanding. For the Learning of Mathematics, 9(3), 7-11.
    Skemp, R. R.(1982). Communicating mathematical:surface structures and deep structures. In Skemp, R. R.(Ed.), Visible Language.
    Tabachneck-Schijf, H. J. M.&Simon, H. A. (1996). Alternative representations of instructional material. In D. Peterson (Ed.), Forms of Representation. Intellect Books Ltd, Exeter United Kingdom.
    Tall, D.(1991). The psychology of advanced mathematical thinking. In Tall, D.(Ed.), Advanced Mathematical Thinking. The Netherlands, Kluwer Academic Publishers.
    Tall, D., Gray, E., Bin Ali, M., Crowley, L., DeMarois, P., McGowen, M., Pitta, D., Pinto, M., Thomas, M., & Yusof, Y.(2001). Symbols and bifurcation between procedural and conceptual thinking. Canadian Journal of Science, Mathematics and Technology Education.
    Thurston, W. P.(1993). On proof and progress in mathematics. For the Learning of Mathematics,15(1), p.29-37.
    Waring, S., Orton, A. & Roper, T.(1999). An experiment in developing proof through pattern.
    Wegerif, R., Mercer, N & Dawes, L.(1999). From social interaction to individual reasoning:an empirical investigation of a possible socio-cultural model of cognitive development. Learning and Instruction 9, p.493-516.

    QR CODE