簡易檢索 / 詳目顯示

研究生: 邱彥超
Chiu, Yen-Chao
論文名稱: 2020年梅雨季前段極端降雨事件之原因及多重尺度交互作用分析
Analyses of Factors and Multi-Scale Interactions Leading to Extreme Rainfall Events in the 2020 Early Mei-yu Season
指導教授: 簡芳菁
Chien, Fang-Ching
口試委員: 楊明仁
Yang, Ming-Jen
林沛練
Lin, Pay-Liam
蘇世顥
Su, Shih-Hao
王重傑
Wang, Chung-Chieh
簡芳菁
Chien, Fang-Ching
口試日期: 2024/01/17
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 120
中文關鍵詞: 系集預報極端降水西南氣流西南渦交互作用
研究方法: 實驗設計法個案研究法比較研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202400239
論文種類: 學術論文
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究調查了2020年5月21日至23日,臺灣地區所經歷的一次破42年梅雨季紀錄之極端降水事件(Y20R事件)。此次降水事件的成因主要與多個天氣系統之間的交互作用有關。2020年梅雨季前段,西北太平洋副熱帶高壓異常強大,導致西南季風顯著增強,從而加強了南海與中南半島一帶往東亞地區的水氣傳輸。在強烈的季風影響之下,於青藏高原東南側形成的西南渦(SWV)向臺灣方向移動。當SWV通過臺灣北側海面時,它提供了臺灣附近的潮濕渦旋環境,其底層的西北風與西南季風在臺灣海峽中部匯合,形成了有利於鋒面生成的動力和熱力條件,進而增強了海峽上的鋒面活動。這一過程中,SWV的位置則會影響鋒面生成的位置,而鋒面的位置又對降水強度影響甚大,當鋒面位於臺灣南部雨區的北側時,會顯著增加該地區的降水量。最後,觀測系統模擬實驗的結果顯示,在預報系統中加入南海北部的投落送資料可以提升對南海地區風場和水氣場的初始條件,從而改善臺灣,尤其是臺灣南部地區的強降水預報能力。本研究對理解臺灣梅雨季降水的形成機制以及大尺度背景場(2020年環境場)和中尺度天氣系統(SWV)之間的交互作用具有重要意義,並對提升極端降水事件的預報能力提供了一個參考方案。未來的研究可以擴大範圍,包含更多類型的降水事件,以便深入瞭解其降水機制。

    第一章 前言 1 1.1 文獻回顧 1 1.2 個案介紹 3 第二章 資料來源與實驗設計 8 2.1 Y20R系集模擬實驗 8 2.2 OSSE資料同化實驗 11 第三章 Y20R降水事件成因分析 15 3.1 氣候分析 15 3.2 Y20R降水環境場分析 18 3.3 強降水時段環境場分析 21 第四章 Y20R多重尺度交互作用分析 26 4.1 降水 26 4.2 SW與水氣通量 30 4.3 SWV與鋒面 37 第五章 系集資料同化系統對Y20R降水事件預報之效用 41 5.1 觀測與NR比較 42 5.2 降水校驗 43 5.3 資料同化對環境場之效果 48 第六章 結論與討論 53 參考文獻 61

    Akaeda, K., J. Reisner, and D. Parsons, 1995: The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev., 123, 1720-1739.
    Amemiya, A., T. Honda, and T. Miyoshi, 2020: Improving the Observation Operator for the Phased Array Weather Radar in the SCALE-LETKF System. SOLA, 16, 6-11.
    Ancell, B., and G. J. Hakim, 2007: Comparing adjoint-and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 4117-4134.
    Araki, K., T. Kato, Y. Hirockawa, and W. Mashiko, 2021: Characteristics of atmospheric environments of quasi-stationary convective bands in Kyushu, Japan during the July 2020 heavy rainfall event. SOLA, 17, 8-15.
    Barker, D., and Coauthors, 2012: The weather research and forecasting model's community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc, 93, 831-843.
    Bishop, G., and G. Welch, 2001: An introduction to the kalman filter. Proc of SIGGRAPH, Course, 8, 41.
    Burpee, R. W., D. G. Marks, and R. T. Merrill, 1984: An assessment of Omega dropwindsonde data in track forecasts of Hurricane Debby (1982). Bull. Amer. Meteor. Soc, 65, 1050-1058.
    Chakraborty, A., P. Srikanth, C. Murthy, P. Rao, and S. Chowdhury, 2021: Assessing lodging damage of jute crop due to super cyclone Amphan using multi-temporal Sentinel-1 and Sentinel-2 data over parts of West Bengal, India. Environ. Monit. Assess., 193, 464.
    Chang, C.-C., and S.-C. Yang, 2022: Impact of assimilating Formosat-7/COSMIC-II GNSS radio occultation data on heavy rainfall prediction in Taiwan. TAO, 33, 7.
    Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
    Chen, C.-S., W.-C. Chen, Y.-L. Chen, P.-L. Lin, and H.-C. Lai, 2005: Investigation of orographic effects on two heavy rainfall events over southwestern Taiwan during the Mei-yu season. Atmos. Res., 73, 101-130.
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of heavy rainfall occurrences in Taiwan. Wea. Forcasting, 22, 981-1002.
    Chen, G. T.-J., 1983: Observational aspects of the Mei-Yu phenomenon in subtropical China. J. Meteor Soc. Japan, 61, 306-312.
    ——, 1992: Mesoscale features observed in the Taiwan Mei-Yu season. J. Meteor Soc. Japan, 70, 497-516.
    Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884-891.
    Chen, G. T.-J., C.-C. Wang, and L.-F. Lin, 2006: A diagnostic study of a retreating mei-yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874-896.
    Chen, G. T.-J., C.-C. Wang, and S.-W. Chang, 2008: A diagnostic case study of mei-yu frontogenesis and development of wavelike frontal disturbances in the subtropical environment. Mon. Wea. Rev., 136, 41-61.
    Chen, J.-M., T. Li, and C.-F. Shih, 2010: Tropical cyclone–and monsoon-induced rainfall variability in Taiwan. J. Clim., 23, 4107-4120.
    Chen, L., M. Dong, and Y. Shao, 1992: The characteristics of interannual variations on the East Asian monsoon. J. Meteor Soc. Japan, 70, 397-421.
    Chen, T.-C., M.-C. Yen, J.-C. Hsieh, and R. W. Arritt, 1999: Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Amer. Meteor. Soc, 80, 2299-2312.
    Chen, X. A., and Y.-L. Chen, 1995: Development of low-level jets during TAMEX. Mon. Wea. Rev., 123, 1695-1719.
    Chen, Y.-L., C.-K. Wang, C.-C. Tu, F. Hsiao, and P.-L. Lin, 2022: Revisiting a Mei-Yu Front Associated with Heavy Rainfall over Taiwan during 6–7 June 2003. Atmosphere, 13, 644.
    Chien, F.-C., 2015: The Role of Southwesterly Flow in MCS Formation During a Heavy Rain Event in Taiwan on 12 - 13 June 2005. TAO, 26, 411.
    Chien, F.-C., and Y.-C. Chiu, 2019: A Composite Study of Southwesterly Flows and Rainfall in Taiwan. J. Meteor Soc. Japan, 97, 1023-1040.
    ——, 2021: Assessing the Impact of Dropsonde Data on Rain Forecasts in Taiwan with Observing System Simulation Experiments. Atmosphere 12, 1672.
    ——, 2023: Factors Leading to Heavy Rainfall in Southern Taiwan in the Early Mei-yu Season of 2020. Mon. Wea. Rev., 151, 1885-1908.
    ——, 2024: The Impact of Large-scale Environments and a Southwest Vortex on Heavy Rainfall in Southern Taiwan in Late May 2020. Mon. Wea. Rev., 152.( Online Publication)
    Chien, F.-C., Y.-C. Liu, and C.-S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteor Soc. Japan, 86, 17-41.
    Chien, F.-C., Y.-C. Chiu, and C.-H. Tsou, 2021: A Climatological Study of Southwesterly Flows and Heavy Precipitation in Taiwan during Mei-yu Seasons from 1979 to 2018. J. Meteor Soc. Japan, 99, 913-931.
    Chiu, Y.-C., and F.-C. Chien, 2023: Long-Term Trends and Interannual Variability of Southwesterly Flows around Southern Taiwan during 44 Mei-Yu Seasons. Journal of Applied Meteorology and Climatology, 62, 1205-1222.
    Choi, K.-S., and I.-J. Moon, 2012: Influence of the Western Pacific teleconnection pattern on Western North Pacific tropical cyclone activity. Dyn. Atmos. Oceans, 57, 1-16.
    Chou, L. C., C. Chang, and R. Williams, 1990: A numerical simulation of the mei-yu front and the associated low level jet. Mon. Wea. Rev., 118, 1408-1428.
    Demirdjian, R., J. R. Norris, A. Martin, and F. M. Ralph, 2020: Dropsonde observations of the ageostrophy within the pre-cold-frontal low-level jet associated with atmospheric rivers. Mon. Wea. Rev., 148, 1389-1406.
    Ding, Y., and J. C. Chan, 2005: The East Asian summer monsoon: an overview. Meteor Atmos. Phys., 89, 117-142.
    Du, Y., and G. Chen, 2018: Heavy Rainfall Associated with Double Low-Level Jets over Southern China. Part I: Ensemble-Based Analysis. Mon. Wea. Rev., 146, 3827-3844.
    Feng, X., C. Liu, G. Fan, X. Liu, and C. Feng, 2016: Climatology and structures of southwest vortices in the NCEP climate forecast system reanalysis. J. Clim., 29, 7675-7701.
    Franklin, J. L., and M. DeMaria, 1992: The impact of Omega dropwindsonde observations on barotropic hurricane track forecasts. Mon. Wea. Rev., 120, 381-391.
    Guo, Y., R. Zhang, Z. Wen, J. Li, C. Zhang, and Z. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu season from an interdecadal perspective. Sci. China Earth Sci., 1-14.
    Hersbach, H., 2016: The ERA5 Atmospheric Reanalysis. AGUFM, 2016, NG33D-01.
    Hirasawa, N., and T. Yasunari, 1990: Variation in the atmospheric circulation over Asia and the Western Pacific associated with the 40-day oscillation of the Indian summer monsoon. J. Meteor Soc. Japan, 68, 129-143.
    Hirockawa, Y., T. Kato, K. Araki, and W. Mashiko, 2020: Characteristics of An Extreme Rainfall Event in Kyushu District, Southwestern Japan in Early July 2020. SOLA, 16, 265-270.
    Holton, J., 2004: An Introduction to Dynamic Meteorology, Elsevier Academic Press. Burlington USA.
    Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
    Horinouchi, T., Y. Kosaka, H. Nakamigawa, H. Nakamura, N. Fujikawa, and Y. N. Takayabu, 2021: Moisture supply, jet, and Silk-Road wave train associated with the prolonged heavy rainfall in Kyushu, Japan in early July 2020. SOLA, 17, 1-8.
    Hsu, W.-R., and W.-Y. Sun, 1994: A numerical study of a low-level jet and its accompanying secondary circulation in a Mei-Yu system. Mon. Wea. Rev., 122, 324-340.
    Huang, W.-R., P.-Y. Liu, J.-H. Chen, and L. Deng, 2019: Impact of boreal summer intra-seasonal oscillations on the heavy rainfall events in Taiwan during the 2017 Meiyu season. Atmosphere, 10, 205.
    Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.
    Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan area mesoscale experiment (TAMEX): An overview. Bull. Amer. Meteor. Soc, 71, 488-503.
    Kuo, Y.-H., L. Cheng, and J.-W. Bao, 1988: Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest vortex. Mon. Wea. Rev., 116, 2481-2504.
    Lau, K., G. Yang, and S. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over Eeat Asia. Mon. Wea. Rev., 116, 18-37.
    Li, G., and J. Chen, 2018: New progresses in the research of heavy rain vortices formed over the southwest China. Torrential Rain Disaster (in Chinese), 37, 293-302.
    Li, J., Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060-1082.
    Li, Y., Y. Deng, S. Yang, and H. Zhang, 2018: Multi-scale temporospatial variability of the East Asian Meiyu-Baiu fronts: Characterization with a suite of new objective indices. Climate Dyn., 51, 1659-1670.
    Li, Z., Y. Luo, Y. Du, and J. C. Chan, 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor Soc. Japan, 98, 213-233.
    Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 2222-2235.
    Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612.
    Lin, Y.-J., R. W. Pasken, and H.-W. Chang, 1992: The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from dual-Doppler measurements. Mon. Wea. Rev., 120, 1816-1836.
    Liu, X., Y. Luo, L. Huang, D. L. Zhang, and Z. Guan, 2020: Roles of double low‐level jets in the generation of coexisting inland and coastal heavy rainfall over south China during the presummer rainy season. J. Geophys. Res. Atmos., 125, e2020JD032890.
    Maejima, Y., and T. Miyoshi, 2020: Impact of the window length of four-dimensional local ensemble transform Kalman filter: A case of convective rain event. SOLA, 16, 37-42.
    Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889-910.
    Ralph, F. M., and Coauthors, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc, 100, 269-289.
    Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forcasting, 24, 601-608.
    Sever, G., and Y.-L. Lin, 2017: Dynamical and physical processes associated with orographic precipitation in a conditionally unstable uniform flow: Variation in basic wind speed. J. Atmos. Sci., 74, 449-466.
    Shen, Y., Y. Du, and G. Chen, 2020: Ensemble sensitivity analysis of heavy rainfall associated with three MCSs coexisting over southern China. J. Geophys. Res. Atmos., 125, e2019JD031266.
    Shu, Y., J. Sun, and J. Chenlu, 2022: A 10-Year Climatology of Midlevel Mesoscale Vortices in China. Journal of Applied Meteorology and Climatology, 61, 309-328.
    Skamarock, W., and Coauthors, 2008: A description of the advanced research WRF Version 3, NCAR technical note, Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, Boulder, Colorado, USA.
    Skamarock, W. C., and Coauthors, 2019: A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145.
    Su, S. H., and Coauthors, 2022: Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Quart. J. Roy. Meteor. Soc., 148, 1663-1682.
    Tai, S.-L., Y.-C. Liou, S.-F. Chang, and J. Sun, 2020: The Heavy Rainfall Mechanism Revealed by a Terrain-Resolving 4DVar Data Assimilation System—A Case Study. Mon. Wea. Rev., 148, 2307-2330.
    Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu‐Baiu Rainfall in Early Summer 2020: Aftermath of the 2019 Super IOD Event. Geophys. Res. Lett., 47, e2020GL090671.
    Tao, S.-Y., 1980: Heavy rainfalls in China. Beijing: Science.
    Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.
    Teng, J.-H., C.-S. Chen, T.-C. C. Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138.
    Thomas, C. M., and D. M. Schultz, 2019: What are the Best Thermodynamic Quantity and Function to Define a Front in Gridded Model Output? Bull. Amer. Meteor. Soc, 100, 873-895.
    Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800.
    Tochimoto, E., K. Sueki, and H. Niino, 2019: Entraining CAPE for better assessment of tornado outbreak potential in the warm sector of extratropical cyclones. Mon. Wea. Rev., 147, 913-930.
    Tochimoto, E., S. Yokota, H. Niino, and W. Yanase, 2022: Ensemble Experiments for a Maritime Meso-β-Scale Vortex that Spawned Tornado-Like Vortices Causing Shipwrecks. J. Meteor Soc. Japan, 100, 141-165.
    Tu, C.-C., Y.-L. Chen, P.-L. Lin, and Y. Du, 2019: Characteristics of the Marine Boundary Layer Jet over the South China Sea during the Early Summer Rainy Season of Taiwan. Mon. Wea. Rev., 147, 457-475.
    Tu, C.-C., Y.-L. Chen, P.-L. Lin, and P.-H. Lin, 2020: The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. TAO, 31, 159-176.
    Volonté, A., A. G. Turner, R. Schiemann, P. L. Vidale, and N. P. Klingaman, 2022: Characterising the interaction of tropical and extratropical air masses controlling East Asian summer monsoon progression using a novel frontal detection approach. Weather Clim. Dynam., 3, 575-599.
    Wang, B., 2006: The asian monsoon. Springer Science & Business Media.
    Wang, B., R. Wu, and K. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Clim., 14, 4073-4090.
    Wang, C.-C., M.-S. Li, C.-S. Chang, P.-Y. Chuang, S.-H. Chen, and K. Tsuboki, 2021: Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-yu season: The 2 June 2017 case. Atmos. Res., 259, 105684.
    Wang, C. C., P. Y. Chuang, S. T. Chen, D. I. Lee, and K. Tsuboki, 2022a: Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model. Nat. Hazards Earth Syst. Sci., 22, 1795-1817.
    Wang, C. C., T. Y. Yeh, M. S. Li, K. Tsuboki, and C. H. Liu, 2022b: A modelling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017. Atmos. Chem. Phys. Discuss., 2022, 1-39.
    Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140-1158.
    Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 5116-5131.
    ——, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 5132-5147.
    Wang, X., T. M. Hamill, J. S. Whitaker, C. H. Bishop, and X. Wang, 2007: A comparison of hybrid ensemble transform Kalman filter–OI and ensemble square-root filter analysis schemes. Mon. Wea. Rev, 135, 1055–1076.
    Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383-2395.
    Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208-2221.
    Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. Jong-Dao Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555-2574.
    Yao, X., Q. Zhang, and X. Zhang, 2020: Potential Vorticity Diagnostic Analysis on the Impact of the Easterlies Vortex on the Short-term Movement of the Subtropical Anticyclone over the Western Pacific in the Mei-yu Period. Advances in Atmospheric Sciences, 37, 1019-1031.
    Yeh, H.-C., and G. T.-J. Chen, 2004: Case study of an unusually heavy rain event over eastern Taiwan during the Mei-yu season. Mon. Wea. Rev., 132, 320-337.
    Yihui, D., and J. C. L. Chan, 2005: The East Asian summer monsoon: an overview. Meteor Atmos. Phys., 89, 117-142.
    Yu, C.-K., and L.-W. Cheng, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., 71, 3202-3222.
    Zhang, C., and Y. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Clim., 30, 5923-5941.
    Zhang, Q.-H., K.-H. Lau, Y.-H. Kuo, and S.-J. Chen, 2003: A numerical study of a mesoscale convective system over the Taiwan Strait. Mon. Wea. Rev., 131, 1150-1170.

    下載圖示
    QR CODE