簡易檢索 / 詳目顯示

研究生: 駱可薇
Lo, Ko-Wei
論文名稱: 3-氯-4-氟苯胺之第一電子激發態暨離子態振動光譜研究
3-Chloro-4-fluoroaniline studied by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy
指導教授: 曾文碧
Tzeng, Wen-Bih
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 3-氯-4-氟苯胺共振雙光子游離離子態振動光譜臨界游離第一電子激發態振動光譜
英文關鍵詞: 3-Chloro-4-fluoroaniline, Resonant two-photon ionization, Cation spectrum, Threshold ionization, Vibronic spectroscopy
論文種類: 學術論文
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用共振雙光子游離與質量解析臨界游離光譜術來探討3-氯- 4氟苯胺(3C4FA)的第一電子激發態與離子基態光譜。在目前儀器的解析極限,3-氯-4-氟苯胺同位素分子(isotopologues)具有相同的躍遷能量與絕熱游離能。我們精確的量測第一電子躍遷能和游離能分別為32 348 ± 2 cm-1 和 63 872 ± 5 cm-1。光譜分析結果顯示大部分明顯之譜峰涉及苯環的平面運動和取代基的彎曲運動。
    藉由所得的數據和本實驗室先前所發表其他苯胺衍生物(鄰-氯苯胺、對-氟苯胺和苯胺)的數據做比較,可發現此分子遵循添加規則(additivity rule)以利我們預測第一電子躍遷能和游離能。為了標定光譜並且提供合理的解釋數據,我們同時也進行量子化學及密度泛函數理論計算。


    We applied the resonant two-photon ionization and mass-analyzed threshold ionization spectroscopic techniques to record the vibronic and cation spectra of 3-chloro-4-fluoroaniline (3C4FA). Within our experimental detection limit, the measured values are the same for both of the 35Cl and 37Cl isotopologues of 3C4FA. The band origin of the S1 ← S0 electronic transition (E1) was found to be 32 348 ± 2 cm-1, and the adiabatic ionization energy (IE) was determined to be 63 872 ± 5 cm-1. Most of the observed active modes of 3C4FA in the electronically excited S1 and cationic ground D0 states mainly involve the in-plane ring deformation and substituent-sensitive bending vibrations. Comparing the E1‘s and IEs of 3C4FA, 3-chloroaniline, 4-fluoroaniline, and aniline, we found an additivity rule which implies weak interactions among the Cl, F, and NH2 substituents. We also performed the quantum chemical and density functional theory calculations to assign spectral bands and to provide reasonable interpretation for our experimental findings.

    中文摘要 英文摘要 目錄……………………………………………………………………....i 圖目錄…………………………………………………………………..iv 表目錄…………………………………………………………………..vi 一、 簡介……………………………………….………………………...1 二、 研究目的…………………………………………………………..6 三、 實驗方法 1. 共振增強多光子游離光譜法(REMPI)…………………..………..8 a. 單色共振雙光子游離(1C-R2PI)光譜法………………………8 b. 雙色共振雙光子游離(2C-R2PI)光譜法………………………9 2. 質量解析臨界游離光譜法(MATI)……………..………………...12 四、 儀器部分 1. 真空系統……………………………….…………….…………...17 a. 束源氣室……………………………………..………….........19 b. 分子與雷射作用區…………………………………………...22 c. 飛行導管……………………………………….……………..24 d. 離子偵測區………………………………….………………..25 2. 雷射系統……………………………………….………….……...28 a. 固態銣釔鋁石榴石雷射(Nd:YAG laser) ……………………28 b. 染料雷射………………………………………….…………..31 3. 同步與信號收集……………………………………………..……...33 五、 實驗過程……………………………………………….…………35 六、 理論計算與光譜分析…………………………………………….42 1. 概論…………………..…………………………………………...42 2. 基底函數組……………..………………………………………...49 3. 同位素系統……………………………………………………….53 4. 光譜判定(Spectral assignment)…………………………………..54 七、 實驗結果 1. 質譜……………….………………………………………………60 2. 第一電子激發態振動光譜……………………………………….62 3. 光游離效率曲線…………………….……...…………………….66 4. 質量解析臨界游離光譜(MATI)…………………………………68 八、 結果討論………………………………………….………………75 1. 躍遷能量與游離能……………………………………………….75 2. 分子構型與分子振動…………………………………………….78 九、 結論………………………………………….…..………………..81 十、 參考文獻………………………………………….……………..83   圖目錄 圖一、全波段光…………………………………………………………...2 圖二、臨界光電子光譜…………………………………………………...4 圖三、3-氯-4-氟苯胺之結構示意圖…………………………………......6 圖四、雙色共振雙光子游離法觀測粗略游離能之示意圖……………10 圖五、 1C、2C-R2PI方法之游離機制之示意圖……………………....11 圖六、高雷德堡態的電子運動行為示意圖……………………………13 圖七、質量解析臨界游離光譜法作用機制示意圖…………………...14 圖八、遲滯電場使游離能下降δ………………………………………15 圖九、高雷德堡態和零動能態分布圖………………………………...16 圖十、實驗裝置示意圖……………………………….............................18 圖十一、飛行時間質譜儀內部構造………………………………….....18 圖十二、脈衝閥的剖面結構……………………………………………21 圖十三、分子束與雷射有效作用範圍示意圖………………………...23 圖十四、Nd3+能階分布…………………………………….....................29 圖十五、DG-535與實驗裝置連接……………………………………...34 圖十六、DG-535的延遲時間設定………………………………….…34 圖十七、分子之吸收能量推測流程圖………………………………...36 圖十八、染料雷射輸出範圍功率圖…………………………………...36 圖十九、質譜與光譜轉換示意圖……………………………………..38 圖二十、實驗記錄圖…………………………………………….…….39 圖二十一、3-氯-4-氟苯胺的原子標號順序………………………..…42 圖二十二、分子位能曲面圖…………………………………………..43 圖二十三、系統零點能與修正項……………………………………..44 圖二十四、同位素計算…………………………………………………53 圖二十五、3-氯-4-氟苯胺的振動模式………………………..………54 圖二十六、苯環的三十種振動基本模式…………………………..…56 圖二十七、1,4-Di-“light”-2-“heavy”系統之振動頻率樣式與…………59 圖二十八、3-氯-4-氟苯胺的質譜結果…………………………………60 圖二十九、3-氯-4-氟苯胺之35Cl飛行時間質譜展開圖………………61 圖三十、3-氯-4-氟苯胺的第一電子激發態振動光譜…………………64 圖三十一、3-氯-4-氯苯胺於第一電子激發態的振動模式…………..65 圖三十二、3-氯-4-氯苯胺光游離效率曲線…………………………...67 圖三十三、3-氯-4-氯苯胺的35Cl質量解析臨界游離光譜……………71 圖三十四、3-氯-4-氯苯胺的37Cl質量解析臨界游離光譜………..…72   表目錄 表一、3-氯-4-氟苯胺與類似分子之振動模式及其頻…………………58 表二、1,4-Di-“light”-2-“heavy”系統之振動頻率………………..……58 表三、3-氯-4-氟苯胺於第一電子激發態振動光譜觀察到之譜峰頻率、 理論計算數值、光譜判定以及運動模式概述………………....65 表四、35Cl-3-氯-4-氟苯胺質量解析臨界游離光譜紀錄之譜峰頻率、 理論計算數值、光譜判定以及運動模式概述………………..73 表五、37Cl-3-氯-4-氟苯胺質量解析臨界游離光譜紀錄之譜峰頻率、 理論計算數值、光譜判定以及運動模式概述……………......74 表六、苯胺與氟及氯取代衍生物之躍遷能及游離能比較……………77 表七、表七為3-氯-4-氟苯胺分子振動頻率之實驗值與計算值及其所對 應的縮減質量μ與力常數k………………………………..…80 表八、3-氯-4-氟苯胺於S1及D0能態觀察到之譜峰頻率……………80

    [1] T. Ebata, A. Fujii, N. Mikami, Int. Rev. Phys. Chem. 17 (1998) 331.
    [2] T. Watanabe, T. Ebata, S. Tanabe, N. Mikami, J. Chem. Phys. 105 [85] (1996) 408.
    [3] G. Brehma. G. Sauera, N. Fritza, S. Schneidera, S. Zaitsev, J. Mol.
    Struct. 735 (2005) 85.
    [4] S. Wategaonkar, S. Doraiswamy, J. Chem. Phys. 105 (1996) 1786.
    [5] Y. Nosenko, R.P. Thummel, A. Mordziński, Phys. Chem. Chem. Phys. 6 (2004) 363.
    [6] C. Mukarakate, A.M. Scheer, D.J. Robichaud, M.W. Jarvis, D.E. David, et al., Rev. Sci. Instrum. 82 (2011) 033104.
    [7] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
    [8] D. W. Turner, M.I. Al Joboury, J. Chem. Phys. 37 (1962) 3007.
    [9] G. C. King, A. J. Yencha and M. C. A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
    [10] Tomas Baer, Yue Li, International Journal of Mass Spectrometry 219 (2002) 381.
    [11] S. Ullrich, W.D. Geppert, C.E.H. Dessent, K. Muller-Dethlefs, J. Phys. Chem. A 104 (2000) 11864.
    [12] S.A. Krasnokutski, J.S. Lee, D.S. Yang, J. Chem. Phys. 132 (2010) 044304.
    [13] J. Li, H. Li, Y. Mo, J. Phys. Chem. A 114 (2010) 9973.
    [14] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
    [15] X. Tong, J. Cerny, K. Müller-Dethlefs, J. Phys. Chem. A 112 (2008) 5866.
    [16] O. Kostko, S.K. Kim, S.R. Leone, M. Ahmed, J. Phys. Chem. A 113 (2009) 14206.
    [17] R. Karaminkov, S. Chervenkov, H.J. Neusser, J. Phys. Chem. A 114 (2010) 11263.
    [18] X. Song, M. Yang, E.R. Davidson, J.P. Reilly, J. Chem. Phys. 99 (1993) 3224.
    [19] X.Q. Tan, D.W. Pratt, J. Chem. Phys. 100 (1994) 7061.
    [20] R.D. Gordon, D. Clark, J. Crawley, R. Mitchell, Spectrochim. Acta A 40 (1987) 657.
    [21] S. Wateganonkar, S. Doraiswamy, J. Chem. Phys. 106 (1997) 4894.
    [22] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
    [23] J.L. Lin , S.C. Yang , Y.C. Yu , W.B. Tzeng , Chem. Phys. Lett. 356 (2002) 267.
    [24] L. Yuan, C. Li, J.L. Lin, S.C. Yang, W.B. Tzeng, Chem. Phys. 323 (2006) 429.
    [25] B. Zhang, C. Li, H. Su, J. Lin, W.B. Tzeng, Chem. Phys. Lett. 390 (2004) 65.
    [26] J. Huang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 422 (2006) 271.
    [27] J.L. Lin, S.C. Yang, Y.C. Yu, W.B. Tzeng, Chem. Phys. Lett. 356 (2002) 267.
    [28] J. L. Lin, W. B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
    [29] W. B. Tzeng, K. Narayanan, C. Y. Hsieh, C. C. Tung, J. Chem. Soc., Faraday Trans. 93 (1997) 2981.
    [30] J.L. Lin, W.B. Tzeng, Phys. Chem. Chem. Phys. 2 (2000) 3759.
    [31] J. L. Lin, K. C. Lin, W. B. Tzeng, Appl. Spectrosc. 55 (2001) 120.
    [32] W. B. Tzeng, J. L. Lin, J. Phys. Chem. A 103 (1999) 8612.
    [33] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 115 (2001) 743.
    [34] W. B. Tzeng, K. Narayanan, G. C. Chang, Appl. Spectrosc. 52 (1998) 890.
    [35] Y. Xie, H. Su, W. B. Tzeng, Chem. Phys. Lett. 394 (2004) 182.
    [36] Y. Xie, J. L. Lin, W. B. Tzeng, Chem. Phys. 305 (2004) 285.
    [37] M. Pradhan, C. Y. Li, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 407 (2005) 100.
    [38] J. Huang, J.L. Lin, W.B. Tzeng, Spectrochim. Acta 67 (2007) 989.
    [39] J.L. Lin, C. Li, W.B. Tzeng, J. Chem. Phys. 120 (2004) 10513.
    [40] J. Lin, W.B. Tzeng, Appl. Spectrosc. 5 (2004) 71.
    [41] C. Li, H. Su, W.B. Tzeng, Chem. Phys. Lett. 410 (2005) 99.
    [42] L.W. Yuan, C. Li, W. B. Tzeng, J. Phys. Chem. A 109 (2005) 9481.
    [43] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, C.C. Tung, Spectrochim. Acta 53 (1997) 2595.
    [44] J. L. Lin, K. C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
    [45] R. H. Wu, J.L. Lin, J. Lin, S.C. Yang, W.B. Tzeng, J. Chem. Phys. 118 (2003) 4929.
    [46] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. 295 (2003) 97.
    [47] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, J. Mol. Spect. 244 (2007) 1.
    [48] J.Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
    [49] J. Huang, C. Li, W.B. Tzeng, Chem. Phys. Lett. 414 (2005) 276.
    [50] S.C. Yang, S.W. Huang, W.B. Tzeng, J. Phys. Chem. A 114 (2010) 11144.
    [51] J. L. Lin, L.C.L. Huang, W. B. Tzeng, J. Phys. Chem. A 105 (2001) 11455.
    [52] Q.S. Zheng, T.I. Fang, B. Zhang, W.B. Tzeng, Chin. J. Chem. Phys.
    22 (2009) 649.
    [53] W.B. Tzeng, K. Narayanan, J. Mol. Struct. 482 (1999) 315.
    [54] C. Qin, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Chem. Phys. Lett. 503
    (2011) 25.
    [55] C. Li, J. L. Lin, W.B. Tzeng, J. Chem. Phys. 122 (2005) 44311.
    [56] P.M. Johnson, E.C. Otis, Annu. Rev. Phys. Chem. 32 (1981) 139.
    [57] S.Y. Tzeng, J.Y. Wu, S. Zhang, W.B. Tzeng, J. Mol. Spectrosc. 281 (2012) 40
    [58] C.Y. Li, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 506.
    [59] U. Boesl, H.J. Neusser, E.W. Schlag, Chem. Phys. 55 (1981) 193.
    [60] H. Ikoma, K.Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
    [61] F. Merk, Annu. Rev. Phys. Chem. 48 (1997) 675.
    [62] Andrewheld, E.W. Schlag, Kluwer, Academic Publishers. (1991) 249.
    [63] K. Müller-Dethlefs and E. W. S. Schlag, Angew. Chem. Int. Ed. Engl. 37 (1998) 1346.
    [64] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520
    [65] M.D. Fayer, ELEMENT OF QUANTUM MECHANICS. Oxford (2001) 133.
    [66] M.G.H. Boogaarts et al., J. Chem. Phys. 104 (1996) 4357.
    [67] G. Scoles, D. Bassi, U. Buck, D.C. Laine, Oxford University Press, Oxford, 1988
    [68] C.R.C Wang, C.C. Hsu, W.Y. Liu, W.C. Tsai, W.B. Tzeng, Rev. Sci. Instrum. 65 (1994) 2776.
    [69] W.C. Wiley, I.H. Mclaren, Rev. Sci. Instrum. 26 (1955) 1150.
    [70] User’s manual (Spectra-Physics LAB-150)
    [71] User’s manual (Lambda Physik Scanmate)
    [72] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than
    Ever.
    [73] W.C. Huang, W.L. Yeh, W.B. Tzeng, J. Mol. Spectrosc. 269 (2011) 248.
    [74] W.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 266 (2011) 52.
    [75] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B.
    Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
    Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
    S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
    Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.
    Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
    Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
    Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
    Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
    Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
    Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
    Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
    Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
    Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
    Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
    Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.
    Pople, Gaussian, Inc., Wallingford CT, 2009
    [76] M.J. Fresch et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
    [77] S.F. Boys, Proc. R. Soc. London Ser. A 200, 542 (1950)
    [78] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
    [79] E. Bright Wilson, Physical Review. Volum 45 (1934)
    [80] J. L. Lin, K. C. Lin, and W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
    [81] W.C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Spectrochim. Acta A 93 (2012) 176.
    [82] Y.Q. Xu, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Spectrochim. Acta A 102, (2013) 365.
    [83] C. Qin, S.Y. Tzeng,B. Zhang, W.B. Tzeng, J. Photochem. Photobiol. A 220 (2011) 139.

    下載圖示
    QR CODE