研究生: |
駱可薇 Lo, Ko-Wei |
---|---|
論文名稱: |
3-氯-4-氟苯胺之第一電子激發態暨離子態振動光譜研究 3-Chloro-4-fluoroaniline studied by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy |
指導教授: |
曾文碧
Tzeng, Wen-Bih |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 3-氯-4-氟苯胺 、共振雙光子游離 、離子態振動光譜 、臨界游離 、第一電子激發態振動光譜 |
英文關鍵詞: | 3-Chloro-4-fluoroaniline, Resonant two-photon ionization, Cation spectrum, Threshold ionization, Vibronic spectroscopy |
論文種類: | 學術論文 |
相關次數: | 點閱:218 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用共振雙光子游離與質量解析臨界游離光譜術來探討3-氯- 4氟苯胺(3C4FA)的第一電子激發態與離子基態光譜。在目前儀器的解析極限,3-氯-4-氟苯胺同位素分子(isotopologues)具有相同的躍遷能量與絕熱游離能。我們精確的量測第一電子躍遷能和游離能分別為32 348 ± 2 cm-1 和 63 872 ± 5 cm-1。光譜分析結果顯示大部分明顯之譜峰涉及苯環的平面運動和取代基的彎曲運動。
藉由所得的數據和本實驗室先前所發表其他苯胺衍生物(鄰-氯苯胺、對-氟苯胺和苯胺)的數據做比較,可發現此分子遵循添加規則(additivity rule)以利我們預測第一電子躍遷能和游離能。為了標定光譜並且提供合理的解釋數據,我們同時也進行量子化學及密度泛函數理論計算。
We applied the resonant two-photon ionization and mass-analyzed threshold ionization spectroscopic techniques to record the vibronic and cation spectra of 3-chloro-4-fluoroaniline (3C4FA). Within our experimental detection limit, the measured values are the same for both of the 35Cl and 37Cl isotopologues of 3C4FA. The band origin of the S1 ← S0 electronic transition (E1) was found to be 32 348 ± 2 cm-1, and the adiabatic ionization energy (IE) was determined to be 63 872 ± 5 cm-1. Most of the observed active modes of 3C4FA in the electronically excited S1 and cationic ground D0 states mainly involve the in-plane ring deformation and substituent-sensitive bending vibrations. Comparing the E1‘s and IEs of 3C4FA, 3-chloroaniline, 4-fluoroaniline, and aniline, we found an additivity rule which implies weak interactions among the Cl, F, and NH2 substituents. We also performed the quantum chemical and density functional theory calculations to assign spectral bands and to provide reasonable interpretation for our experimental findings.
[1] T. Ebata, A. Fujii, N. Mikami, Int. Rev. Phys. Chem. 17 (1998) 331.
[2] T. Watanabe, T. Ebata, S. Tanabe, N. Mikami, J. Chem. Phys. 105 [85] (1996) 408.
[3] G. Brehma. G. Sauera, N. Fritza, S. Schneidera, S. Zaitsev, J. Mol.
Struct. 735 (2005) 85.
[4] S. Wategaonkar, S. Doraiswamy, J. Chem. Phys. 105 (1996) 1786.
[5] Y. Nosenko, R.P. Thummel, A. Mordziński, Phys. Chem. Chem. Phys. 6 (2004) 363.
[6] C. Mukarakate, A.M. Scheer, D.J. Robichaud, M.W. Jarvis, D.E. David, et al., Rev. Sci. Instrum. 82 (2011) 033104.
[7] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
[8] D. W. Turner, M.I. Al Joboury, J. Chem. Phys. 37 (1962) 3007.
[9] G. C. King, A. J. Yencha and M. C. A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
[10] Tomas Baer, Yue Li, International Journal of Mass Spectrometry 219 (2002) 381.
[11] S. Ullrich, W.D. Geppert, C.E.H. Dessent, K. Muller-Dethlefs, J. Phys. Chem. A 104 (2000) 11864.
[12] S.A. Krasnokutski, J.S. Lee, D.S. Yang, J. Chem. Phys. 132 (2010) 044304.
[13] J. Li, H. Li, Y. Mo, J. Phys. Chem. A 114 (2010) 9973.
[14] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
[15] X. Tong, J. Cerny, K. Müller-Dethlefs, J. Phys. Chem. A 112 (2008) 5866.
[16] O. Kostko, S.K. Kim, S.R. Leone, M. Ahmed, J. Phys. Chem. A 113 (2009) 14206.
[17] R. Karaminkov, S. Chervenkov, H.J. Neusser, J. Phys. Chem. A 114 (2010) 11263.
[18] X. Song, M. Yang, E.R. Davidson, J.P. Reilly, J. Chem. Phys. 99 (1993) 3224.
[19] X.Q. Tan, D.W. Pratt, J. Chem. Phys. 100 (1994) 7061.
[20] R.D. Gordon, D. Clark, J. Crawley, R. Mitchell, Spectrochim. Acta A 40 (1987) 657.
[21] S. Wateganonkar, S. Doraiswamy, J. Chem. Phys. 106 (1997) 4894.
[22] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
[23] J.L. Lin , S.C. Yang , Y.C. Yu , W.B. Tzeng , Chem. Phys. Lett. 356 (2002) 267.
[24] L. Yuan, C. Li, J.L. Lin, S.C. Yang, W.B. Tzeng, Chem. Phys. 323 (2006) 429.
[25] B. Zhang, C. Li, H. Su, J. Lin, W.B. Tzeng, Chem. Phys. Lett. 390 (2004) 65.
[26] J. Huang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 422 (2006) 271.
[27] J.L. Lin, S.C. Yang, Y.C. Yu, W.B. Tzeng, Chem. Phys. Lett. 356 (2002) 267.
[28] J. L. Lin, W. B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
[29] W. B. Tzeng, K. Narayanan, C. Y. Hsieh, C. C. Tung, J. Chem. Soc., Faraday Trans. 93 (1997) 2981.
[30] J.L. Lin, W.B. Tzeng, Phys. Chem. Chem. Phys. 2 (2000) 3759.
[31] J. L. Lin, K. C. Lin, W. B. Tzeng, Appl. Spectrosc. 55 (2001) 120.
[32] W. B. Tzeng, J. L. Lin, J. Phys. Chem. A 103 (1999) 8612.
[33] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 115 (2001) 743.
[34] W. B. Tzeng, K. Narayanan, G. C. Chang, Appl. Spectrosc. 52 (1998) 890.
[35] Y. Xie, H. Su, W. B. Tzeng, Chem. Phys. Lett. 394 (2004) 182.
[36] Y. Xie, J. L. Lin, W. B. Tzeng, Chem. Phys. 305 (2004) 285.
[37] M. Pradhan, C. Y. Li, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 407 (2005) 100.
[38] J. Huang, J.L. Lin, W.B. Tzeng, Spectrochim. Acta 67 (2007) 989.
[39] J.L. Lin, C. Li, W.B. Tzeng, J. Chem. Phys. 120 (2004) 10513.
[40] J. Lin, W.B. Tzeng, Appl. Spectrosc. 5 (2004) 71.
[41] C. Li, H. Su, W.B. Tzeng, Chem. Phys. Lett. 410 (2005) 99.
[42] L.W. Yuan, C. Li, W. B. Tzeng, J. Phys. Chem. A 109 (2005) 9481.
[43] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, C.C. Tung, Spectrochim. Acta 53 (1997) 2595.
[44] J. L. Lin, K. C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
[45] R. H. Wu, J.L. Lin, J. Lin, S.C. Yang, W.B. Tzeng, J. Chem. Phys. 118 (2003) 4929.
[46] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. 295 (2003) 97.
[47] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, J. Mol. Spect. 244 (2007) 1.
[48] J.Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
[49] J. Huang, C. Li, W.B. Tzeng, Chem. Phys. Lett. 414 (2005) 276.
[50] S.C. Yang, S.W. Huang, W.B. Tzeng, J. Phys. Chem. A 114 (2010) 11144.
[51] J. L. Lin, L.C.L. Huang, W. B. Tzeng, J. Phys. Chem. A 105 (2001) 11455.
[52] Q.S. Zheng, T.I. Fang, B. Zhang, W.B. Tzeng, Chin. J. Chem. Phys.
22 (2009) 649.
[53] W.B. Tzeng, K. Narayanan, J. Mol. Struct. 482 (1999) 315.
[54] C. Qin, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Chem. Phys. Lett. 503
(2011) 25.
[55] C. Li, J. L. Lin, W.B. Tzeng, J. Chem. Phys. 122 (2005) 44311.
[56] P.M. Johnson, E.C. Otis, Annu. Rev. Phys. Chem. 32 (1981) 139.
[57] S.Y. Tzeng, J.Y. Wu, S. Zhang, W.B. Tzeng, J. Mol. Spectrosc. 281 (2012) 40
[58] C.Y. Li, M. Pradhan, W.B. Tzeng, Chem. Phys. Lett. 411 (2005) 506.
[59] U. Boesl, H.J. Neusser, E.W. Schlag, Chem. Phys. 55 (1981) 193.
[60] H. Ikoma, K.Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
[61] F. Merk, Annu. Rev. Phys. Chem. 48 (1997) 675.
[62] Andrewheld, E.W. Schlag, Kluwer, Academic Publishers. (1991) 249.
[63] K. Müller-Dethlefs and E. W. S. Schlag, Angew. Chem. Int. Ed. Engl. 37 (1998) 1346.
[64] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520
[65] M.D. Fayer, ELEMENT OF QUANTUM MECHANICS. Oxford (2001) 133.
[66] M.G.H. Boogaarts et al., J. Chem. Phys. 104 (1996) 4357.
[67] G. Scoles, D. Bassi, U. Buck, D.C. Laine, Oxford University Press, Oxford, 1988
[68] C.R.C Wang, C.C. Hsu, W.Y. Liu, W.C. Tsai, W.B. Tzeng, Rev. Sci. Instrum. 65 (1994) 2776.
[69] W.C. Wiley, I.H. Mclaren, Rev. Sci. Instrum. 26 (1955) 1150.
[70] User’s manual (Spectra-Physics LAB-150)
[71] User’s manual (Lambda Physik Scanmate)
[72] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than
Ever.
[73] W.C. Huang, W.L. Yeh, W.B. Tzeng, J. Mol. Spectrosc. 269 (2011) 248.
[74] W.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 266 (2011) 52.
[75] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.
Pople, Gaussian, Inc., Wallingford CT, 2009
[76] M.J. Fresch et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
[77] S.F. Boys, Proc. R. Soc. London Ser. A 200, 542 (1950)
[78] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
[79] E. Bright Wilson, Physical Review. Volum 45 (1934)
[80] J. L. Lin, K. C. Lin, and W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
[81] W.C. Huang, P.S. Huang, C.H. Hu, W.B. Tzeng, Spectrochim. Acta A 93 (2012) 176.
[82] Y.Q. Xu, S.Y. Tzeng, B. Zhang, W.B. Tzeng, Spectrochim. Acta A 102, (2013) 365.
[83] C. Qin, S.Y. Tzeng,B. Zhang, W.B. Tzeng, J. Photochem. Photobiol. A 220 (2011) 139.