簡易檢索 / 詳目顯示

研究生: 許芝菡
Hsu, Tzu-Han
論文名稱: 透過過程導向引導式探究學習(POGIL)來探討國高中生使用教育機器人學習AIoT之學習成就
Learning Achievement of Junior and Senior High School Students Using Educational Robotics to Learn AIoT through Process Oriented Guided Inquiry Learning (POGIL)
指導教授: 許庭嘉
Hsu, Ting-Chia
口試委員: 周建興
Chou, Chien-Hsing
郭旭展
Kuo, Hsu-Chan
許庭嘉
Hsu, Ting-Chia
口試日期: 2023/07/11
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 165
中文關鍵詞: 過程導向引導式探究學習探究發明應用學習環教育機器人
英文關鍵詞: Process Oriented Guided Inquiry Learning, Explore-Invent-Apply Learning Cycle, Educational Robotics Implementation
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300908
論文種類: 學術論文
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討使用二人為一組的過程導向引導式探究學習方法(Process Oriented Guided Inquiry Learning, POGIL),和透過個別POGIL的探究發明應用學習環(Explore-Invent-Apply Learning Cycle, EIA),學生於教育機器人實作課程之學習影響。二組中學生透過本研究所發展的教育機器人教材(稱作「送餐機器人」)來指導學生學習AIoT概論、人工智慧實作、影像辨識、物聯網實作、機器人程式、電路接線,以提升學生的學習成就、創意自我效能、運算思維和機器人活動態度等表現。研究結果顯示個別的POGIL之低成就的學生能在創意自我效能中的成品積極信念面向,與運算思維中的演算法邏輯面向,以及機器人活動態度中的信心面向,表現顯著優於二人協作的POGIL之低成就學生,建議低成就的學生可以先採取個別的POGIL進行機器人創作;而高成就的學生可以直接採取二人協作的POGIL。本研究也針對此一結果有深入的討論,建議未來教師以POGIL進行機器人實作活動之前,可將學生的先備基礎能力當作是進行個別創作或者二人協作之參考指標。

    The aim of this study is to investigate the effects of Process Oriented Guided Inquiry Learning (POGIL) method with two students as a team and the Explore-Invent-Apply Learning Cycle (EIA) through individual POGIL on student learning in an educational robotics implementation course.
    In this study, two groups of students were guided through the learning process using educational robot materials, named 'food-delivery robot,' which were developed for this research. The materials covered topics such as AIoT introduction, AI implementation, image recognition, IoT implementation, robot programming, and circuit wiring, aiming to enhance students' learning achievement, creative self-efficacy, computational thinking, and attitudes towards robotics activities.
    The study results indicate that low-achieving students in the individual POGIL setting exhibit significantly better performance in creative self-efficacy regarding positive beliefs regarding finished products, algorithmic logic in computational thinking, and confidence aspect in robotics activities attitudes when compared to low-achieving students in the collaborative POGIL setting. On the other hand, high-achieving students can directly engage in collaborative POGIL. The study provides in-depth discussions on this result and recommends that teachers consider students' prerequisite skills as a reference when deciding between individual or collaborative POGIL for robot implementation activities.

    中文摘要 I ABSTRACT III 表次 IX 圖次 XIII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第三節 研究範圍與限制 6 第四節 重要名詞解釋 8 第二章 文獻探討 11 第一節 運算思維 11 第二節 POGIL過程導向引導式探究學習 13 第三節 教育機器人 18 第四節 創意自我效能 21 第三章 研究設計與實施 25 第一節 課程與教材設計 25 第二節 研究架構與設計 41 第三節 研究步驟與實驗流程 44 第四節 研究對象 50 第五節 研究工具 52 第六節 資料處理與分析 55 第四章 研究結果 57 第一節 學習成就 58 第二節 創意自我效能 68 第三節 運算思維 75 第四節 機器人活動態度 83 第五節 研究結果與討論 91 第五章 結論與建議 103 參考文獻 109 附錄 119 附錄一 121 附錄二 122 附錄三 123 附錄四 124 附錄五 131 附錄六 137 附錄七 139 附錄八 150

    Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008
    Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988. https://doi.org/10.1016/j.compedu.2011.10.006
    Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
    Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of Educational Research, 31(6), 445-457. https://doi.org/10.1016/S0883-0355(99)00014-2
    Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11). National academy press.
    Brown, P. J. (2010). Process-oriented guided-inquiry learning in an introductory anatomy and physiology course with a diverse student population. Advances in Physiology Education, 34(3), 150-155. https://doi.org/10.1152/advan.00055.2010
    Cascolan, H. M. S. (2019). Students’ conceptual understanding, metacognitive awareness and self-regulated learning strategies towards Chemistry using POGIL approach. ASEAN Multidisciplinary Research Journal, 1(1).Retrieved from https://www.paressu.org/online/index.php/aseanmrj/article/view/172
    Castro, E., Cecchi, F., Salvini, P., Valente, M., Buselli, E., Menichetti, L., . . . Dario, P. (2018). Design and impact of a teacher training course, and attitude change concerning educational robotics. International Journal of Social Robotics, 10, 669-685. https://doi.org/10.1007/s12369-018-0475-6
    Chang, Y. s., Chen, M. Y. C., Chuang, M. J., & Chou, C.-h. (2019). Improving creative self-efficacy and performance through computer-aided design application. Thinking Skills and Creativity, 31, 103-111. https://doi.org/10.1016/j.tsc.2018.11.007
    Chase, A., Pakhira, D., & Stains, M. (2013). Implementing process-oriented, guided-inquiry learning for the first time: Adaptations and short-term impacts on students’ attitude and performance. Journal of Chemical Education, 90(4), 409-416. https://doi.org/10.1021/ed300181t
    Chin, K. Y., Hong, Z. W., & Chen, Y. L. (2014). Impact of using an educational robot-based learning system on students’ motivation in elementary education. IEEE Transactions on Learning Technologies, 7(4), 333-345.
    Chuang, C. F., Shiu, S. C., & Cheng, C. J. (2010). The relation of college students’ process of study and creativity: The mediating effect of creative self-efficacy. World Academy of Science, Engineering and Technology, 43(7), 960-963. https://doi.org/10.5281/zenodo.1330839
    Coşkun, T. K., & Deniz, G. F. (2022). The contribution of 3D computer modeling education to twenty-first century skills: self-assessment of secondary school students. International Journal of Technology and Design Education, 32(3), 1553-1581. https://doi.org/10.1007/s10798-021-09660-y
    Cross, J., Hamner, E., Zito, L., Nourbakhshh, I., & Bernstein, D. (2016). Development of an assessment for measuring middle school student attitudes towards robotics activities. In 2016 IEEE Frontiers in Education Conference (FIE) (pp. 1-8). doi: 10.1109/FIE.2016.7757677.
    Dong, B., Shi, Q., Yang, Y., Wen, F., Zhang, Z., & Lee, C. (2021). Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy, 79, 105414. https://doi.org/10.1016/j.nanoen.2020.105414
    Douglas, E. P., & Chiu, C. C. (2013). Implementation of Process Oriented Guided Inquiry Learning (POGIL) in Engineering. Advances in Engineering Education, 3(3), 1-16.
    Eberlein, T., Kampmeier, J., Minderhout, V., Moog, R. S., Platt, T., Varma‐Nelson, P., & White, H. B. (2008). Pedagogies of engagement in science: A comparison of PBL, POGIL, and PLTL. Biochemistry and Molecular Biology Education, 36(4), 262-273. https://doi.org/10.1002/bmb.20204
    Eguchi, A. (2014). Educational robotics for promoting 21st century skills. Journal of Automation, Mobile Robotics and Intelligent Systems, 8(1), 5-11. DOI: 10.14313/JAMRIS_1-2014/1
    Hein, S. M. (2012). Positive impacts using POGIL in organic chemistry. Journal of Chemical Education, 89(7), 860-864. https://doi.org/10.1021/ed100217v
    Ho, S. M. (2014). The development of a school-based model of self-regulated learning in Hong Kong secondary school classrooms. Asia Pacific Journal of Educational Development (APJED), 3(2), 25-36. https://doi.org/10.6228/APJED.03.02.03
    Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310. https://www.learntechlib.org/p/200629/.
    Hu, H. H., & Campbell, P. B. (2016). Levels of student participation and stages of relevant curriculum.In 2016 Research on Equity and Sustained Participation in Engineering, Computing, and Technology (RESPECT),(pp. 1-8). IEEE. doi: 10.1109/RESPECT.2016.7836162.
    Hu, H. H., & Shepherd, T. D. (2013). Using POGIL to help students learn to program. ACM Transactions on Computing Education (TOCE), 13(3), 1-23. https://doi.org/10.1145/2499947.2499950
    Huang, N. t., Chang, Y. s., & Chou, C. h. (2020). Effects of creative thinking, psychomotor skills, and creative self-efficacy on engineering design creativity. Thinking Skills and Creativity, 37, 100695. https://doi.org/10.1016/j.tsc.2020.100695
    Hung, S. P. (2018). Validating the creative self-efficacy student scale with a Taiwanese sample: An item response theory-based investigation. Thinking Skills and Creativity, 27, 190-203. https://doi.org/10.1016/j.tsc.2018.02.006
    Idul, J. J. A., & Caro, V. B. (2022). Does process-oriented guided inquiry learning (POGIL) improve students’ science academic performance and process skills? International Journal of Science Education, 44(12), 1994-2014. https://doi.org/10.1080/09500693.2022.2108553
    Joshi, N., & Lau, S. K. (2021). Effects of process-oriented guided inquiry learning on approaches to learning, long-term performance, and online learning outcomes. Interactive Learning Environments, 1-16. https://doi.org/10.1080/10494820.2021.1919718
    Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569. https://doi.org/10.1016/j.chb.2017.01.005
    Kucuk, S., & Sisman, B. (2020). Students’ attitudes towards robotics and STEM: Differences based on gender and robotics experience. International Journal of Child-Computer Interaction, 23, 100167. https://doi.org/10.1016/j.ijcci.2020.100167
    Kussmaul, C. (2016). Patterns in classroom activities for process oriented guided inquiry learning (POGIL).In Proceedings of the 23rd Conference on Pattern Languages of Programs,(pp. 1-16).
    Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber, M., Schep, M., Barnes, D. J., & Hollingsworth, R. G. (2002). A road map for teaching introductory programming using LEGO© mindstorms robots. Acm Sigcse Bulletin, 35(2), 191-201. https://doi.org/10.1145/782941.783002
    Lin, Y. J., & Wang, H. c. (2021). Using virtual reality to facilitate learners’ creative self-efficacy and intrinsic motivation in an EFL classroom. Education and Information Technologies, 26(4), 4487-4505. https://doi.org/10.1007/s10639-021-10472-9
    Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012
    Mathisen, G. E., & Bronnick, K. S. (2009). Creative self-efficacy: An intervention study. International Journal of Educational Research, 48(1), 21-29. https://doi.org/10.1016/j.ijer.2009.02.009
    Meinel, M., Wagner, T. F., Baccarella, C. V., & Voigt, K. I. (2019). Exploring the effects of creativity training on creative performance and creative self‐efficacy: Evidence from a longitudinal study. The Journal of Creative Behavior, 53(4), 546-558. https://doi.org/10.1002/jocb.234
    Milto, E., Rogers, C., & Portsmore, M. (2002). Gender differences in confidence levels, group interactions, and feelings about competition in an introductory robotics course. 32nd Annual Frontiers in Education, (Vol. 2, pp. F4C-F4C). IEEE. doi: 10.1109/FIE.2002.1158224.
    Mitchell, E., & Hiatt, D. (2010). Using POGIL techniques in an information literacy curriculum. The Journal of Academic Librarianship, 36(6), 539-542. https://doi.org/10.1016/j.acalib.2010.08.010
    Moog, R. S., & Spencer, J. N. (2008). Process oriented guided inquiry learning (Vol. 994). American Chemical Society Washington, DC.
    Nemiro, J., Larriva, C., & Jawaharlal, M. (2017). Developing creative behavior in elementary school students with robotics. The Journal of Creative Behavior, 51(1), 70-90. https://doi.org/10.1002/jocb.87
    Noh, J., & Lee, J. (2020a). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68(1), 463-484. https://doi.org/10.1007/s11423-019-09708-w
    Özmutlu, M., Atay, D., & Erdoğan, B. (2021). Collaboration and engagement based coding training to enhance children’s computational thinking self-efficacy. Thinking Skills and Creativity, 40, 100833. https://doi.org/10.1016/j.tsc.2021.100833
    Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children? Computers in Human Behavior, 105, 105849. https://doi.org/10.1016/j.chb.2018.12.027
    Polat, E., & Yilmaz, R. M. (2022). Unplugged versus plugged-in: examining basic programming achievement and computational thinking of 6th-grade students. Education and Information Technologies, 27(7), 9145-9179. https://doi.org/10.1007/s10639-022-10992-y
    Puente-Díaz, R. (2016). Creative self-efficacy: An exploration of its antecedents, consequences, and applied implications. The Journal of Psychology, 150(2), 175-195. https://doi.org/10.1080/00223980.2015.1051498
    Puozzo, I. C., & Audrin, C. (2021). Improving self-efficacy and creative self-efficacy to foster creativity and learning in schools. Thinking Skills and Creativity, 42, 100966. https://doi.org/10.1016/j.tsc.2021.100966
    Putri, E. R., & Indriati, D. (2020). POGIL Model on Mathematical Connection Ability Viewed from Self-Regulated Learning. International Journal of Evaluation and Research in Education, 9(2), 394-400. DOI: 10.11591/ijere.v9i2.20321
    Qu, J. R., & Fok, P. K. (2022). Cultivating students’ computational thinking through student–robot interactions in robotics education. International Journal of Technology and Design Education, 32(4), 1983-2002. https://doi.org/10.1007/s10798-021-09677-3
    Roller, M. C., & Zori, S. (2017). The impact of instituting Process-Oriented Guided-Inquiry Learning (POGIL) in a fundamental nursing course. Nurse Education Today, 50, 72-76. https://doi.org/10.1016/j.nedt.2016.12.003
    Rumain, B., & Geliebter, A. (2020). A Process-Oriented Guided-Inquiry Learning (POGIL)-based curriculum for the experimental psychology laboratory. Psychology Learning & Teaching, 19(2), 194-206. https://doi.org/10.1177/1475725720905973
    Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931. https://doi.org/10.1016/j.tsc.2021.100931
    Şen, Ş., Yilmaz, A., & Geban, Ö. (2016). The effect of Process Oriented Guided Inquiry Learning (POGIL) on 11th Graders’ conceptual understanding of electrochemistry. Asia-Pacific Forum on Science Learning and Teaching, (Vol. 17, No. 2, p. n2).
    Şen, Ş., Yılmaz, A., & Geban, Ö. (2015). The effects of process oriented guided inquiry learning environment on students' self-regulated learning skills. Problems of Education in the 21st Century, 66, 54. DOI: 10.33225/pec/15.66.54
    Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003
    Sun, L., Hu, L., & Zhou, D. (2021). Improving 7th-graders’ computational thinking skills through unplugged programming activities: A study on the influence of multiple factors. Thinking Skills and Creativity, 42, 100926. https://doi.org/10.1016/j.tsc.2021.100926
    Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: Its potential antecedents and relationship to creative performance. Academy of Management Journal, 45(6), 1137-1148. https://doi.org/10.2307/3069429
    Vishnumolakala, V. R., Southam, D. C., Treagust, D. F., Mocerino, M., & Qureshi, S. (2017). Students’ attitudes, self-efficacy and experiences in a modified process-oriented guided inquiry learning undergraduate chemistry classroom. Chemistry Education Research and Practice, 18(2), 340-352. https://doi.org/10.1039/C6RP00233A
    Walker, L., & Warfa, A.-R. M. (2017). Process oriented guided inquiry learning (POGIL®) marginally effects student achievement measures but substantially increases the odds of passing a course. PLoS One, 12(10), e0186203. https://doi.org/10.1371/journal.pone.0186203
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
    Yang, H. L., & Cheng, H. H. (2009). Creative self-efficacy and its factors: An empirical study of information system analysts and programmers. Computers in Human Behavior, 25(2), 429-438. https://doi.org/10.1016/j.chb.2008.10.005
    Yilmaz Ince, E., & Koc, M. (2021). The consequences of robotics programming education on computational thinking skills: An intervention of the Young Engineer's Workshop (YEW). Computer Applications in Engineering Education, 29(1), 191-208. https://doi.org/10.1002/cae.22321
    Zhan, Z., He, W., Yi, X., & Ma, S. (2022). Effect of unplugged programming teaching aids on children’s computational thinking and classroom interaction: With respect to Piaget’s four stages theory. Journal of Educational Computing Research, 60(5), 1277-1300. DOI: 10.1177/07356331211057143
    Zhong, B., Liu, X., & Huang, Y. (2023). Effects of Pair Learning on Girls’ Learning Performance in Robotics Education. Journal of Educational Computing Research, 61(1), 151-177. https://doi.org/10.1177/07356331221092660
    Zhong, B., & Wang, J. (2022). Exploring the non-significant difference on students’ cognitive load imposed by robotics tasks in pair learning. International Journal of Social Robotics, 14(1), 3-13. https://doi.org/10.1007/s12369-021-00764-y
    Zhong, B., & Wang, Y. (2021). Effects of roles assignment and learning styles on pair learning in robotics education. International Journal of Technology and Design Education, 31(1), 41-59. https://doi.org/10.1007/s10798-019-09536-2

    無法下載圖示 電子全文延後公開
    2028/07/11
    QR CODE