簡易檢索 / 詳目顯示

研究生: 劉宸宇
Liu, Chen-Yu
論文名稱: 三價鋁金屬與二價可大量合成之MOF對於揮發性有機物的除去效能比較
Comparison of removal efficiency to VOC by using scalable divalent MOF and trivalent Al-MOF
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 呂家榮
Lu, Chia-Jung
賴宇倫
Lai, Yu-Lun
李承軒
Lee, Cheng-Shiuan
口試日期: 2021/06/08
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: 金屬有機框架結構揮發性有機物吸附劑毒物吸附氣相動態吸附氣相靜態吸附
英文關鍵詞: MOFs, VOCs, Absorbents, Dynamic adsorption, Static adsorption
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202100990
論文種類: 學術論文
相關次數: 點閱:272下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文透過高孔洞性金屬有機骨架(Metal-Organic Frameworks, MOFs)與其高分子混摻顆粒進行揮發性有機物在不同的測試下的吸附效率。所選擇的MOFs包含了可大量合成的二價金屬MOFs : HKUST-1、ZIF-8;具有中心金屬含氧鍊狀結構的鋁三價MOFs : MIL-68、A520及CAU-10等,進一步將多種MOFs進行和高分子聚乙烯醇(PVA)進行混摻,找出孔隙率最佳的比例進行揮發性有機物的吸附測試。在性質的鑑定上,以粉末X-ray繞射鑑定混摻後的MOF@PVA高分子顆粒和所使用的MOF比較繞射圖譜結構差異;傅立葉轉換紅外線光譜儀(FTIR)測試MOFs與PVA高分子是否有配位或鍵結產生官能基;場發射式掃描電子顯微鏡(FE-SEM)進行混摻顆粒橫切面的微觀觀察;熱重分析儀(TGA)測定顆粒以及粉體的結構穩定性。結果成功配置出10%、20%、30% PVA/MOF混摻比例的高分子顆粒,且10% MIL-68@PVA 10%顆粒有著高達0.86 g/g的醋酸、0.62 g/g的丙酮、0.53 g/g的異丙醇及0.7 g/g的甲苯氣體吸附量,對比於市售的活性碳、沸石吸附劑都有著1.5~3倍的吸附優越性,同時擁有極佳的循環使用效率。而在低濃度的甲苯動態吸附測試結果中,10% HKUST-1@PVA顆粒卻有著比10% MIL-68@PVA顆粒更好的甲苯吸附效率,總吸附量接近3倍差距,並且透過動力學模型的模擬成功找出了較適合解釋在低濃度動態下微孔MOFs對甲苯的吸附機理,表明在高濃度甲苯環境如工廠中更適合以MIL-68@PVA顆粒作為吸附劑,而低濃度工業及家庭廢氣則更適合小孔徑的HKUST-1@PVA。

    This paper mainly uses Metal-Organic Frameworks (MOFs) and PVA mixed with MOFs particles for testing their ability in Volatile Organic Compounds (VOCs) adsorption capacity. The selected MOFs include divalent metal MOFs that can be synthesized in large quantities: HKUST-1 and ZIF-8; aluminum trivalent MOFs with a central metal oxygen-containing chain structure : MIL-68, A520 and CAU-10. A variety of MOFs were mixed with polymer polyvinyl alcohol (PVA) to find out the best ratio for the adsorption test of volatile organic compounds. In the identification of properties, powder X-ray diffraction (PXRD) was used to identify the difference in the diffraction pattern between the MOF powder and MOF@PVA Beads; Fourier transform infrared spectroscopy (FTIR) tested whether new functional group produced by interaction between MOFs and PVA; field emission scanning electron microscope (FE-SEM) was used for observating the cross-section of mixed particles and the thermogravimetric Analyzer (TGA) measures the structural stability of particles and powders. As a result, MOF@PVA Beads with 10%, 20%, and 30% PVA/MOF blending ratios were successfully configured, and the 10% MIL-68@PVA particles have up to 0.86 g/g of acetic acid, 0.62 g/g of acetone, 0.53 g/g of isopropanol and 0.7 g/g of toluene gas adsorption capacity, at least 1.5~3 times better than commercially available activated carbon and zeolite adsorbents and has excellent recycling efficiency.
    In the low concentration of toluene dynamic adsorption test results, 10% HKUST-1@PVA Beads have a better toluene adsorption efficiency than 10% MIL-68@PVA up to 3 times gap. Through the simulation of the kinetic model, we found that it is more suitable to explain the adsorption mechanism of toluene by the microporous MOFs under the low concentration dynamic.

    摘要 i Abstract iii 目錄 v 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1-1 前言 1 1-2 MOFs的氣體分離 3 1-3 MOFs的吸附特性 4 1-4 鋁MOFs 5 1-5 MOFs的大量合成 7 1-6 揮發性有機物質 8 1-7 MOFs對VOCs的吸附 11 1-8 MOFs造粒 12 1-9 研究動機 14 第二章 實驗與儀器 15 2-1 MOFs合成藥品 15 2-2 實驗用藥品 18 2-3 儀器型號與操作 19 2-3-1. Powder X-ray Diffractometer (PXRD),X-光粉末繞射儀: 19 2-3-2. Specific Surface Area and Porosimetry Analyze(BET),表面積及孔徑分析儀: 21 2-3-3. Thermogravimetric analyzer(TGA),熱重分析儀 : 23 2-3-4. Scanning Electron Microscope(SEM),掃描式電子顯微鏡 : 23 2-3-5.Fourier-Transform Infrared Spectroscopy (FTIR),傅立葉轉換紅外線光譜儀: 24 2-4 實驗步驟 25 2-4-1 MOFs合成步驟 25 2-4-2 MOFs活化步驟 29 2-4-3 MOF@PVA 造粒方法 30 2-5 MOFs對揮發性有機物質的吸附 31 2-5-1 活化溫度選擇 31 2-5-2 吸附時間選擇 32 2-5-3 MOFs對於VOCs飽和吸附測試方法 33 2-5-4 動態低濃度VOCs吸附測試 34 第三章 MOFs對於VOCs吸附探討 36 3-1 MOFs的X-ray繞射分析 (PXRD) 38 3-2 MOFs表面積及孔徑分析測試 40 3-3 MOFs熱重分析測試 48 3-4 MOFs對揮發性有機物質的吸附 49 3-4-1 實驗方式 49 3-4-2 MOFs對於VOCs的高濃度飽和吸附測試 52 3-5 MOF@PVA Beads的X-ray繞射分析 62 3-6 MOFs及MOF@PVA Beads傅立業轉換紅外光譜分析 64 3-7 MOF@PVA Beads表面積及孔徑分析測試 65 3-7-1 MOF@PVA Beads氮氣吸附性質 65 3-7-2 MOF@PVA Beads孔徑分布 72 3-8 MOF@PVA Beads的場發射式掃描電子顯微鏡測試 74 3-9 MOF@PVA Beads的熱重分析 75 3-10 MOF@PVA Beads對揮發性有機物質的靜態飽和吸附優化參數 76 3-11 MOF@PVA Beads對於VOCs的高濃度飽和吸附測試 80 3-12 MOF@PVA Beads與市售吸附材料對於揮發性有機物的去除效率比較 87 3-13 HKUST-1@PVA 與MIL-68@PVA Beads對甲苯的低濃度動態除去效率 90 第四章 結論 96 參考文獻 99

    (1) Tranchemontagne, D.; Hunt, J.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron. 2008, 64, 8553-8564.
    (2) Jambovane, S. R.; Nune, S. K.; Kelly, R. T.; McGrail, B. P.; Wang, Z.; Nandasiri, M. I.; Katipamula, S.; Trader, C.; Schaef, H. T. Continuous, One-Pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors. Sci. Rep. 2016, 6, 36657.
    (3) Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal− organic porous materials. J . Am. Chem. Soc. 2009, 131, 7524.
    (4) Tanabe, K. K.; Cohen, S. M. Modular, Active, and Robust Lewis Acid Catalysts Supported on a Metal− Organic Framework. Inorg. Chem. 2010, 49, 6766.
    (5) Tanabe, K. K.; Wang, Z.; Cohen, S. M. Systematic functionalization of a metal− organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 2008, 130, 8508.
    (6) Tanabe, K. K.; Cohen, S. M. Engineering a metal–organic framework catalyst by using postsynthetic modification. Angew. Chem. Int. Ed. 2009, 48, 7424.
    (7) Wang, Z.; Tanabe, K. K.; Cohen, S. M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg. Chem. 2009, 48, 296.
    (8) Wang, Z.; Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1315.
    (9) Yu, L. Q.; Huang, R. D.; Xu, Y. Q.; Liu, T. F.; Chu, W. C.; Hu, W. Syntheses, structures and properties of novel 3D lanthanide metal-organic frameworks with paddle-wheel building blocks. Inorganica. Chimica. Acta. 2008, 361, 2115.
    (10) Pan, L.; Adams, K. M.; Hernandez, H. E.; Wang, X.; Zheng, C.; Hattori, Y.; Kaneko, K. Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. J. Am. Chem. Soc. 2003, 125, 3062
    (11) Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1248.
    (12) Gandara, F.; Puebla, E. G.; Iglesias, M.; Proserpio, D. M.; Snejko, N.; Monge, M. A. Controlling the structure of arenedisulfonates toward catalytically active materials. Chem. Mater. 2009, 21, 655.
    (13) Perles, J.; Snejko, N.; Iglesias, M.; Angeles Monge, M. 3D scandium and yttrium arenedisulfonate MOF materials as highly thermally stable bifunctional heterogeneous catalysts. J. Mater. Chem. 2009, 19, 6504.
    (14) Jhung, S. H.; Khan, N. A.; Hasan, Z. Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption. CrystEngComm. 2012, 14, 7099.
    (15) Kuznicki, S. M.; Bell, V. A.; Nair, S.; Hillhouse, H. W.; Jacubinas, R. M.; Braunbarth, C. M.; Toby, B. H.; Tsapatsis, M. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature, 2001, 412, 720–724
    (16) Lin, R.‐B.; Xiang, S.; Zhou, W. B. Microporous metal-organic framework materials for gas separation. Chen, Chem. 2020, 6, 337-363
    (17) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295, 469
    (18) Greathouse, J. A.; Allendorf, M. D. The Interaction of Water with MOF-5 Simulated by Molecular Dynamics. J. Am. Chem. Soc. 2006, 128, 10678-10679
    (19) So, P.; Tang, P. H.; Liao, B. H.; Nadaraj, S.; Chen, H. T.; Lin, C. H. Sustainable scale-up synthesis of MIL-68 (Al) using IPA as solvent for acetic acid capture. Microporous Mesoporous mater. 2021, 110954
    (20) Rallapalli, P.; Prasanth, K. P.; Patil, D.; Somani, R.S.; Jarsa, R. V.; Bajaj, H. C. J. A high-pressure/supercritical method to dry silica-based materials prepared by biomimetic aqueous sol-gel methods. Porous Mater. 2011, 18, 205
    (21) Barthelet, K; Marrot, J.; Férey, G.; Riou, D. VIII(OH){O2C–C6H4–CO2}.(HO2C–C6H4–CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology : reticular synthesis with infinite inorganic building blocks. Chem. Commun. 2004, 520-521
    (22) Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle F.; Audebrand, N.; Latroche, M. The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorg. Chem. 2008, 47, 24, 11892–11901
    (23) Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J.-M.; Morcrette, M.; Tarascon, J.-M.; Maurin, G.; Férey, G. Eur. J. Synthesis, structure, characterization, and redox properties of the porous MIL‐68 (Fe) solid. Inorg. Chem. 2010, 3789
    (24) Embrechts, H.; Kriesten, M.; Ermer, M.; Peukert, W.; Hartmann, M.; Distaso, M. In Situ Raman and FTIR Spectroscopic Study on the Formation of the Isomers MIL-68(Al) and MIL-53(Al). RSC Adv. 2020, 10, 7336– 7348
    (25) Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications. Microporous Mesoporous Mater. 2012, 157, 131– 136
    (26) Elsa Alvarez, Nathalie Guillou, Charlotte Martineau, Bart Bueken, Ben Van de Voorde,Clément Le Guillouzer, Paul Fabry, Farid Nouar, Francis Taulelle, Dirk de Vos, Jong-San Chang,Kyoung Ho Cho, Naseem Ramsahye, Thomas Devic, Marco Daturi, Guillaume Maurin, Christian Serre. Angew. Chem. Int. Ed. 2015, 54, 3664 –3668
    (27) Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 2012, 25, 17-26
    (28) Jin, H.; Mo, K.; Wen, F.; Li, Y. J. Membr Preparation and pervaporation performance of CAU-10-H MOF membranes. J. Membr. Sci. 2019, 577, 129– 136
    (29) Johnson, J. W.; Jacobson, A. J. Redox Intercalation Reactions of VOPO4·2H2O. Angew. Chem. Int. Edit. 1983, 22, 412.
    (30) Khani, Y.; Kamyar, N.; Bahadoran, F.; Safari, N.; Amini, M. M. A520 MOF-Derived Alumina as Unique Support for Hydrogen Production from Methanol Steam Reforming: The Critical Role of Support on Performance. Renewable Energy, 2020, 156, 1055– 1064
    (31) Rabenau, A. Angew. Chem. Int. Edit. 1985, 24, 1026-1040
    (32) Prathap, M. U. A.; Gunasekaran, S. Rapid and Scalable Synthesis of Zeolitic Imidazole Framework (ZIF-8) and Its Use for the Detection of Trace Levels of Nitroaromatic Explosives. Adv. Sustainable Syst. 2018, 2, 1800053
    (33) Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes Towards MOF Production at Scale. Chem. Soc. Rev. 2017, 46, 3453– 3480.
    (34) Batten, M. P.; Rubio-Martinez, M.; Hadley, T.; Carey, K.-C.; Lim, K.-S.; Polyzos, A.; Hill, M. R. Continuous Flow Production of Metal-Organic Frameworks Curr. Opin. Chem. Eng. 2015, 8, 55– 59
    (35) Valizadeh, B.; Nguyen, T. N.; Smit, B.; Stylianou, K. C. Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gas-Sparged Column. Adv. Funct. Mater. 2018, 28, 1801596
    (36) Kaiqiong, Qiu,;Lixian, Y,; Junmin, L,;Peitao, W,; Yi, Y,;Daiqi, Y,; Liming, W. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980–2010. Atoms. Environ. 2014 ,86 ,102-112
    (37) Yang, K.; Xue, F.; Sun, Q.; Yue, R.; Lin, D. J. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177. Environ. Chem. Eng. 2013, 1, 713
    (38) Vellingiri, K., Szulejko, J., Kumar, P. et al. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep. 2016, 6, 27813
    (39) Shafiei, M.; Alivand, M. S.; Rashidi, A.; Samimi, A.; Mohebbi-Kalhori, D. Synthesis and adsorption performance of a modified micro-mesoporous MIL-101(Cr) for VOCs removal at ambient conditions. Chem. Eng. J. 2018, 341, 164– 174
    (40) Li, H. ; Eddaoudi M. ; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999, 402, 276-279
    (41) Kim, S. C.; Shim, W. G. Recycling the copper based spent catalyst for catalytic combustion of VOCs. Appl. Catal., B, 2008, 79, 149– 156
    (42) Damasceno Borges, D.; Maurin, G.; Galvao, D. S. Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries. MRS Adv. 2017, 2, 519– 524
    (43) Wang, H.; Wang, T.; Han, L.; Tang, M.; Zhong, J.; Huang, W.; Chen, R. VOC adsorption and desorption behavior of hydrophobic, functionalized SBA-15. J. Mater. Res. 2016, 31, 516– 525
    (44) Khudozhitkov, A. E.; Arzumanov, S. S.; Kolokolov, D.; Stepanov, A. G. Dynamics of xylene isomers in MIL-53 (Al) MOF probed by solid state 2IH NMR. Microporous Mesoporous Mater. 2020, 30, 110155
    (45) Zheng, C.; Wang, Y.; Phua, S. Z. F.; Lim, W. Q.; Zhao, Y. ZnO–DOX@ZIF-8 Core–Shell Nanoparticles for pH-Responsive Drug Delivery. ACS Biomater. Sci. Eng. 2017, 10, 2223–2229
    (46) Liu,L.; Liu, J.; Zeng,Y.; Tan, S.J.; Do, D.; Nicholson, D. Formaldehyde adsorption in carbon nanopores–New insights from molecular simulation. Chem. Eng. J., 2019, 370, 866-874
    (47) Vellingiri, K.; Szulejko, J. E.; Kumar, P.; Kwon, E. E.; Kim, K. H.; Deep, A.; Boukhvalov, D. W.; Brown, R. J. C. Metal Organic Frameworks as Sorption Media for Volatile and Semi-Volatile Organic Compounds at Ambient Conditions. Sci. Rep. 2016, 6, 27813
    (48) Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51−54.
    (49) Ma, X.; Zhang, Z.; Wu, H.; Li, J.; Yang, L. Adsorption of volatile organic compounds at medium-high temperature conditions by activated carbons. Energy Fuels. 2020, 34, 3679-3690
    (50) Carratalá-Abril, J. Lillo-Ródenas, M. A.; Linares-Solano, A.; Cazorla-Amorós, D. Activated carbons for the removal of low concentration gaseous toluene at the semipilot scale. Ind. Eng. Chem. Res. 2009, 48, 2066
    (51) Qi, J.; Li,J.; Li, Y.; Fang, X.; Sun, X.; Shen, J.; Han, W.; Wang, L. Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal. Chemical Engineering Journal, 2016, 307, 989-998
    (52) Liang, X.; Chi, J.; Yang, Z. The influence of functional group on activated carbon for acetone adsorption property by molecular simulation study. Microporous Mesoporous Mater. 2018, 262, 77
    (53) Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal-Organic Framework Material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51−54

    下載圖示
    QR CODE