研究生: |
鄭凱維 Cheng, Kai-Wei |
---|---|
論文名稱: |
應用田口法於AZ31鎂合金薄板摩擦攪拌銲接之最佳參數設計 Optimization of Friction Stir Welding on AZ31 Thin Plate Using Taguchi Method |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 尤尚邦 Yu, Shang-Pang |
口試委員: |
鄧敦平
Teng, Tun-Ping 劉傳璽 Liu, Chuan-Hsi 尤尚邦 Yu, Shang-Pang |
口試日期: | 2022/01/26 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 鎂合金 、摩擦攪拌銲接 、田口法 、抗拉強度 |
英文關鍵詞: | magnesium alloy, friction stir welding, Taguchi method, tensile strength |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202200287 |
論文種類: | 學術論文 |
相關次數: | 點閱:142 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用精密型五軸加工機,配合自行設計得夾具夾持厚度為1 mm之AZ31鎂合金薄板試片,固定於工作平台上進行摩擦攪拌銲接,使用田口法減少實驗次數並找出最適參數組合以得到最佳的抗拉強度,用L9的田口直交表設計加工參數,三種因子與各三種水準分別為攪拌頭肩部尺寸(2、2.5、3 mm)、主軸轉速(14000、15000、16000 rpm)以及進給速度(5、10、15 mm/min)。銲接後再進行銲道的表面觀察、微硬度試驗、金相顯微組織觀察、拉伸試驗及掃描式電子顯微鏡觀測分析,實驗後得到以下幾項結論:
1. 銲道的孔洞缺陷直接影響銲道的抗拉強度,從拉伸試驗的斷裂面能看出其斷裂位置並非原本的對接邊,而是銲道造成的孔洞處斷裂,抗拉強度最高的編號5試片其孔洞缺陷最小,抗拉強度最高,能判斷孔洞缺陷對銲道抗拉強度有非常大的負面影響。
2. 最高的抗拉強度為編號五試片,其參數為2.5 mm肩部尺寸、15000 rpm、15 mm/min,抗拉強度為169.052 Mpa,約為母材強度的65%,最低的抗拉強度為編號1試片,其參數為2 mm肩部尺寸、14000 rpm及5 mm/min,抗拉強度為30.804 Mpa,為母材強度的11%。
3. 編號5號試片出現延性破壞的酒窩狀(dimple)組織,顯示本試片在拉伸過程中產生了塑性變形,其他八組試片發現材料的斷面呈現劈裂面或自由表面,尚未完全塑性變形便破斷,可以得知其他組別試片的破斷面皆為脆性破壞。
4. 透過田口法,找出之最適參數為A2(2.5 mm肩部尺寸)、B2(15000 rpm)、C3(15 mm/min)參數組合,其剛好為實驗參數配置的編號五號試片。
In this study, a small five-axis machining machine was used with self-designed fixtures to hold AZ31 magnesium alloy sheet specimens with a thickness of 1 mm, fixed on the working platform for friction stir welding. The Taguchi method was used to reduce the number of experiments and find the optimal parameters. Combined to obtain the best tensile strength, the processing parameters are designed with the Taguchi direct table of L9. The three factors and the three levels are respectively the shoulder size of the stirring head (2, 2.5, 3 mm) and the spindle speed (14000, 15000, 16000 rpm) And the feed speed (5, 10, 15 mm/min). After welding, surface observation, microhardness test, metallographic microscopic test, tensile test and scanning electron microscope observation and analysis. After the experiment, the following conclusions were obtained:
1. The highest tensile strength is the No.5 test piece, whose parameters are2.5 mm shoulder width, 15000 rpm, 15 mm/min, and the tensile strength is 169.052Mpa, which is about 65% of the strength of the base metal, and the lowest tensile strength is No. 1 test piece, its parameters are 2 mm shoulder width, 14000 rpm and 5 mm/min, and the tensile strength is 30.804 Mpa, which is 11% of the base metal strength.
2. The hole defect of the weld bead directly affects the tensile strength of the weld bead. From the fracture surface of the tensile test, it can be seens that the fracture position is not the original butt edge, but the hole caused by the weld bead. The test piece No.5 has the smallest hole defect and the highest tensile strength. It can be judged that the hole defect has a very negative impact on the tensile strength of the weld bead.
3. The test piece No.5 has a dimple structure with ductile failure, which shows that this test piece has plastic deformation during the stretching process. It is broken before complete plastic deformation. It can be seens that the fracture surfaces of other groups of test pieces are all brittle failures.
4. Through the Taguchi method, the optimal parameters were found to be the combination of A2 (2.5 mm shoulder diameter), B2 (15000 rpm), and C3 (15 mm/min), which is exactly the No. 5 test piece configured by the experimental parameters.
1. 張宇泰,「鋁合金薄板應用摩擦攪拌銲接之研究」,碩士論文,國立臺灣師範大學機電科技研究所,2019
2. 鄭慶民,「熱處理型鋁合金銲接性之研究」,博士論文,國立交通大學機械工程學系,2006
3. 溫晉源,「2024鋁合金熱裂性及異質銲接機械性質之研究」,碩士論文,國立臺灣師範大學機電科技研究所,2010
4. M.M. Shtrikman, “Trends in the Development of the Friction Stir Welding Process”, Welding International, Vol.29,2015
5. Yoshihiro Kusuda, “Honda Develops Robotized FSW Technology to Weld Steel and Aluminum and Applied It to a Mass-Production Vehicle”, Industrial Robot: An International Journal, Vol.40,2013.
6. M.R. Johnsen “Friction Stir Welding Takes Off at Boeing”, Welding Journal, Vol. 78,1999.
7. 蔡幸甫,「鎂合金在台灣之現況及其發展機會」,工研院材料研究所
8. 田振榮、周長彬、李岳倫,「鋁鋅系列鎂合金銲接性之研究」,學位論文,國立臺灣師範大學工業教育學系,2005
9. R.S. Mishra, Z.Y. Ma, Materials Science and Engineering ,2005
10. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, G.B. Patent Application No. 9125978.8,1991
11. C. Dawes, W. Thomas, “Friction Stir Joining of Aluminium Alloys”, TWI Bulletin 6,1995
12. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum “, Scripta Mater,1997
13. G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, “Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum “, Scripta Mater 37,1997
14. K.V. Jata, S.L. Semiatin, “Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys”, Scripta Mater 43,2000
15. S. Benavides, Y. Li, L.E. Murr, D. Brown, J.C. McClure, “Low-Temperature Friction-Stir Welding of 2024 Aluminum”, Scripta Mater. 41 1999
16. L.E. Murr, Y. Li, R.D. Flores, E.A. Trillo, “Intercalation Vortices and Related Microstructural Features in the Friction-Stir Welding of Dissimilar Metals”, Mater Res. Innovat. 2,1998
17. Y. Li, E.A. Trillo, L.E. Murr, “Friction Stir Welding of Aluminum Alloy 2024 to Silver”, J. Mater. Sci. Lett. 19,2000
18. Y. Li, L.E. Murr, J.C. McClure, “Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum to 6061 Aluminum”, Mater. Sci. Eng. ,1999
19. C.J. Dawes, W.M. Thomas, “ Friction Stir Process Welds Aluminum Alloys”, Welding Journal 75 ,1996
20. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al alloy”, Scripta Mater,2000
21. R.S. Mishra, M.W. Mahoney,”in Superplasticity in Advanced Materials Process”, Mater. Sci. 2001
22. W.M. Thomas, E.D. Nicholas, S.D. Smith, in: S.K. Das, J.G. Kaufman, T.J. Lienert,’Aluminum 2001—Proceedings of the TMS 2001 Aluminum Automotive and Joining Sessions’,2001
23. W.M. Thomas, K.I. Johnson, C.S. Wiesner, “Friction Stir Welding-Recent Developments in Tool and Process Technologies”, Adv. Eng. Mater.5,2003
24. W.M. Thomas, A.B.M. Braithwaite, R. John, in: “Proceedings of the Third International Symposium on Friction Stir Welding”,2001
25. W.M. Thomas, R.E. Dolby, in: S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, J.M. Vitek, “Proceedings of the Sixth International Conference on Trends inWelding Research”, Pine Mountain, GA, ASM International,2003
26. R.S. Mishra, Z.Y. Ma,“Friction stir welding and processing” Materials Science and Engineering R 50,2005
27. “Magnesium and Magnesium Alloys”ASM Special Handbook,1999
28. 張志溢、黃志青,「摩擦旋轉攪拌製程之新近發展與應用」,科儀新知第二十五卷第四期,2003
29. 黃繼輝,「應用田口法於五軸CNC銑削加工製程之最佳化參數設計」,碩士論文,國立臺北科技大學,2008
30. 黃俊榮,「AZ型鎂合金微銲接之最適參數研究」,碩士論文,國立臺灣師範大學工業教育學系,2005