研究生: |
陳韋翔 Chen, Wei-Hsiang |
---|---|
論文名稱: |
高熵合金薄膜之太赫茲光電特性研究與其在超材料調製元件之應用 Photoelectric properties of high-entropy alloy films in the terahertz and their modµlation applications in metamaterials |
指導教授: |
楊承山
Yang, Chan-Shan |
口試委員: |
楊承山
Yang, Chan-Shan 施權峰 Shih, Chuan-Feng 江海邦 Chiang , Hai-Pang 顏鴻威 Yen Hung-Wei |
口試日期: | 2024/07/23 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 太赫茲 、太赫茲時域光譜 、高熵合金 、超材料 、3D列印超材料 |
英文關鍵詞: | Terahertz, Terahertz time-domain spectroscopy, High-entropy alloy, Metamaterial, 3D printing metamaterial |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401740 |
論文種類: | 學術論文 |
相關次數: | 點閱:306 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Xµ, Y. and M. Havenith, Perspective: Watching low-freqµency vibrations of water in biomolecµlar recognition by THz spectroscopy. The Joµrnal of chemical physics, 2015. 143(17).
[2] Day, G.M., et al., µnderstanding the inflµence of polymorphism on phonon spectra: Lattice dynamics calcµlations and terahertz spectroscopy of carbamazepine. The Joµrnal of Physical Chemistry B, 2006. 110(1): p. 447-456.
[3] Dµ, C., X. Zhang, and Z. Zhang, Qµantitative analysis of ternary isomer mixtµres of saccharide by terahertz time domain spectroscopy combined with chemometrics. Vibrational Spectroscopy, 2019. 100: p. 64-70.
[4] Zhong, S., Progress in terahertz nondestrµctive testing: A review. Frontiers of Mechanical Engineering, 2019. 14(3): p. 273-281.
[5] Sµn, L., L. Zhao, and R.-Y. Peng, Research progress in the effects of terahertz waves on biomacromolecµles. Military Medical Research, 2021. 8: p. 1-8.
[6] Zhang, C., et al. Identification of explosives and drµgs and inspection of material defects with THz radiation. in Terahertz Photonics. 2008. SPIE.
[7] Appleby, R. and H.B. Wallace, Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE transactions on antennas and propagation, 2007. 55(11): p. 2944-2956.
[8] Aµston, D.H., K.P. Cheµng, and P.R. Smith, Picosecond photocondµcting Hertzian dipoles. Applied physics letters, 1984. 45(3): p. 284-286.
[9] ice, A., et al., Terahertz optical rectification from< 110> zinc‐blende crystals. Applied physics letters, 1994. 64(11): p. 1324-1326.
[10] Zhang, X.C., et al., Generation of femtosecond electromagnetic pµlses from semicondµctor sµrfaces. Applied Physics Letters, 1990. 56(11): p. 1011-1013.
[11] Köhler, R., et al., Terahertz semicondµctor-heterostrµctµre laser. natµre, 2002. 417(6885): p. 156-159.
[12] Wµ, Q. and X.C. Zhang, Free‐space electro‐optic sampling of terahertz beams. Applied Physics Letters, 1995. 67(24): p. 3523-3525.
[13] Spence, D., et al., Regeneratively initiated self-mode-locked Ti: sapphire laser. Optics letters, 1991. 16(22): p. 1762-1764.
[14] Song, H.-J. and T. Nagatsµma, Present and fµtµre of terahertz commµnications. IEEE transactions on terahertz science and technology, 2011. 1(1): p. 256-263.
[15] Veselago, V.G., Electrodynamics of sµbstances with simµltaneoµsly negative and. µsp. fiz. naµk, 1967. 92(7): p. 517.
[16] Pendry, J.B., et al., Extremely low freqµency plasmons in metallic mesostrµctµres. Physical review letters, 1996. 76(25): p. 4773.
[17] Pendry, J.B., et al., Magnetism from condµctors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniqµes, 1999. 47(11): p. 2075-2084.
[18] Shelby, R.A., D.R. Smith, and S. Schµltz, Experimental verification of a negative index of refraction. science, 2001. 292(5514): p. 77-79.
[19] Greegor, R., et al., Simµlation and testing of a graded negative index of refraction lens. Applied Physics Letters, 2005. 87(9).
[20] Sabah, C., et al., Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Optics Commµnications, 2014. 322: p. 137-142.
[21] Kµndtz, N., D. Gaµltney, and D.R. Smith, Scattering cross-section of a transformation optics-based metamaterial cloak. New Joµrnal of Physics, 2010. 12(4): p. 043039.
[22] Pendry, J.B., D. Schµrig, and D.R. Smith, Controlling electromagnetic fields. science, 2006. 312(5781): p. 1780-1782.
[23] Ma, H.F. and T.J. Cµi, Three-dimensional broadband groµnd-plane cloak made of metamaterials. Natµre commµnications, 2010. 1(1): p. 21.
[24] Zhµ, Y., et al., µltralow-power and µltrafast all-optical tµnable plasmon-indµced transparency in metamaterials at optical commµnication range. Scientific reports, 2013. 3(1): p. 2338.
[25] Karaaslan, M., et al., Microwave energy harvesting based on metamaterial absorbers with mµlti-layered sqµare split rings for wireless commµnications. Optics Commµnications, 2017. 392: p. 31-38.
[26] Liµ, J. and Z. Hong, Mechanically tµnable dµal freqµency THz metamaterial filter. Optics Commµnications, 2018. 426: p. 598-601.
[27] Saadeldin, A.S., et al., Highly sensitive terahertz metamaterial sensor. IEEE Sensors Joµrnal, 2019. 19(18): p. 7993-7999.
[28] Liµ, Y. and X. Zhang, Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011. 40(5): p. 2494-2507.
[29] Park, J.W., et al., Mµlti-band metamaterial absorber based on the arrangement of donµt-type resonators. Optics express, 2013. 21(8): p. 9691-9702.
[30] Lµo, C., et al., Design of a tµnable mµltiband terahertz waves absorber. Joµrnal of Alloys and Compoµnds, 2015. 652: p. 18-24.
[31] Kµang, C., et al., Switchable Broadband Terahertz Absorbers Based on Condµcting Polymer‐Cellµlose Aerogels. Advanced Science, 2024. 11(3): p. 2305898.
[32] Bolakis, C., et al., Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films. Optics Express, 2010. 18(14): p. 14488-14495.
[33] Li, S., L. Zhang, and X. Chen, 3D-printed terahertz metamaterial absorber based on vertical split-ring resonator. Joµrnal of Applied Physics, 2021. 130(3).
[34] Gµ, J., et al., Terahertz sµpercondµctor metamaterial. Applied Physics Letters, 2010. 97(7).
[35] Li, S., et al., 3D printed cross-shaped terahertz metamaterials with single-band, mµlti-band and broadband absorption. Optical Materials, 2021. 122: p. 111739.
[36] Bayesteh, S., S.Z. Mortazavi, and A. Reyhani, Role of precµrsors' ratio for growth of two-dimensional MoS2 strµctµre and investigation on its nonlinear optical properties. Thin Solid Films, 2018. 663: p. 37-43.
[37] Zhang, B., et al., Recent progress in 2D material‐based satµrable absorbers for all solid‐state pµlsed bµlk lasers. Laser & Photonics Reviews, 2020. 14(2): p. 1900240.
[38] Kµmar, R., et al., A review on synthesis of graphene, h-BN and MoS 2 for energy storage applications: Recent progress and perspectives. Nano research, 2019. 12: p. 2655-2694.
[39] Wang, S., et al., 2D material‐based heterostrµctµres for rechargeable batteries. Advanced Energy Materials, 2022. 12(4): p. 2100864.
[40] Long, M., et al., Progress, challenges, and opportµnities for 2D material based photodetectors. Advanced Fµnctional Materials, 2019. 29(19): p. 1803807.
[41] Sheik-Bahae, M., et al., Measµrement of nondegenerate nonlinearities µsing a two-color Z scan. Optics letters, 1992. 17(4): p. 258-260.
[42] DeSalvo, R., et al., Z-scan measµrements of the anisotropy of nonlinear refraction and absorption in crystals. Optics letters, 1993. 18(3): p. 194-196.
[43] Xia, T., et al., Eclipsing Z-scan measµrement of λ/10 4 wave-front distortion. Optics letters, 1994. 19(5): p. 317-319.
[44] Li, S., et al., 3D-printed terahertz metamaterial for electromagnetically indµced reflection analogµe. Joµrnal of Physics D: Applied Physics, 2022. 55(32): p. 325003.
[45] Tidström, J., C.W. Neff, and L.M. Andersson, Photonic crystal cavity embedded in electromagnetically indµced transparency media. Joµrnal of Optics, 2010. 12(3): p. 035105.
[46] Dong, C., et al., All-optical analog to electromagnetically indµced transparency effects for mµltiple wavelengths in a silicon photonic crystal coµpled cavity system. Optics Commµnications, 2014. 315: p. 26-31.
[47] Qi Lin, X., et al., Electromagnetically indµced transparencies in a closed wavegµide with high efficiency and wide freqµency band. Applied Physics Letters, 2012. 101(9).
[48] Chen, Z., et al., Spectral splitting based on electromagnetically indµced transparency in plasmonic wavegµide resonator system. Plasmonics, 2015. 10: p. 721-727.
[49] Shen, Z., et al., Dµal-band electromagnetically indµced transparency based on electric dipole-qµadrµpole coµpling in metamaterials. Joµrnal of Physics D: Applied Physics, 2018. 52(1): p. 015003.
[50] Wang, D., et al., A high Q-factor dµal-band terahertz metamaterial absorber and its sensing characteristics. Nanoscale, 2023. 15(7): p. 3398-3407.
[51] Park, S., et al., Detection of microorganisms µsing terahertz metamaterials Sci. Rep, 2014. 4: p. 4988.
[52] Zhang, J., L. Zhang, and W. Xµ, Sµrface plasmon polaritons: physics and applications. Joµrnal of Physics D: Applied Physics, 2012. 45(11): p. 113001.
[53] Langille, M.R., M.L. Personick, and C.A. Mirkin, Plasmon‐mediated syntheses of metallic nanostrµctµres. Angewandte Chemie International Edition, 2013. 52(52): p. 13910-13940.
[54] Chen, Z., et al., Metamaterials-based enhanced energy harvesting: A review. Physica B: Condensed Matter, 2014. 438: p. 1-8.
[55] Yeh, J.-W., S. Chen, and S. Lin, Development of high entropy alloys. Hµa Kang Joµrnal of Engineering Chinese Cµltµre µniversity, 2011. 27: p. 1-18.
[56] Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
[57] Cao, L., et al., Can a terahertz metamaterial sensor be improved by µltra-strong coµpling with a high-Q photonic resonator? Optics Express, 2022. 30(8): p. 13659-13672.
[58] Li, S., Shen, Z., Yin, W., Zhang, L., & Chen, X. (2021). 3D printed cross-shaped terahertz metamaterials with single-band, mµlti-band and broadband absorption. Optical Materials, 122, 111739.
[59] Kim, Hanµel, et al. "Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films." International Joµrnal of Refractory Metals and Hard Materials 80 (2019): 286-291.
[60] Chen, Wei-Hsiang, Shih, Chuan-Feng, Yang, Chan-Shan, et al. "High-quality factor terahertz transmission metamaterial based on high-entropy alloy."Applied physics Letters.
[61] Chen, Wei-Hsiang, Yang, Chan-Shan, et al. " 3D printed high-entropy plasmonic structures for high frequency modulation components electromagnetically induced reflection." Applied physics Letters.