簡易檢索 / 詳目顯示

研究生: 李姿諭
Lee, Tzu-Yu
論文名稱: 以fNIRS探討幼兒進行卡片向度改變分類作業時前額葉活化程度與工作記憶負荷量之關聯性
The Association between Prefrontal Activation and Working Memory Load on the Dimensional Change Card Sorting Task in Young Children
指導教授: 王馨敏
Wang, Shin-Min
口試委員: 王馨敏
Wang, Shin-Min
陳欣進
Chen, Hsin-Chin
洪聰敏
Hong, Tsung-Min
口試日期: 2024/07/26
學位類別: 碩士
Master
系所名稱: 幼兒與家庭科學學系
Department of Child and Family Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 54
中文關鍵詞: 卡片向度改變分類作業幼兒fNIRS工作記憶認知彈性前額葉
英文關鍵詞: Dimensional Change Card Sorting tasks(DCCS), toddler, fNIRS, working memory, cognitive flexibility, prefrontal lobe
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401596
論文種類: 學術論文
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 執行功能(executive function)在人類的發展中扮演著至關重要的角色,尤其影響著人們未來的學業成就,並在生命的前五年中快速地發展。執行功能其中一個面向為認知彈性(cognitive flexibility),許多研究表示大多數 5 歲以前的幼兒無法在操作卡片向度改變分類作業(Dimensional Change Card Sorting task,簡稱 DCCS 作業)中成功轉換規則,此作業為測量認知彈性的經典作業。因此許多學者使用 DCCS 作業探究導致幼兒作業失敗的相關因素,而認知彈性是建立在抑制控制與工作記憶之上。本研究根據以競爭記憶系統為基礎的堅持理論(Theory of Perseveration based on Competing Memory Systems)為理論基礎 (Morton & Munakata, 2002),探討工作記憶負荷量與前額葉腦區活化程度之間的關聯性。因此本研究採用Brace 等 (2006) 以競爭記憶系統為基礎的堅持理論所設計的DCCS作業,假設幼兒若是成功通過切換後階段,即是透過減低工作記憶負荷量的鷹架指導而達成的。研究者於台北市招募 44位 (男生22位,女生22位)36月齡至53月齡間(平均數=43.1, 標準差= 5.7)的正常發展幼兒進行研究。每一位參與實驗的幼兒皆需進行DCCS作業一(口語指導情境)及DCCS作業二(鷹架指導情境);同時使用功能性近紅外光譜儀(Functional Near-Infrared Spectroscopy,簡稱fNIRS)檢測幼兒在進行兩種不同的 DCCS 作業時,前額葉腦區的含氧血濃度變化,並假設工作記憶負荷量與含氧血濃度變化呈現線性相關。
    研究結果發現,在行為表現上,幼兒透過作業二能有效成功通過切換後階段,與Brace 等 (2006) 研究結果一致,然而大腦影像紀錄顯示幼兒進行作業一及作業二時腦部皆沒有顯著的活化與差異性。研究者認為幼兒可能藉著作業二鷹架的引導,重新建立分類規則,導致大腦不需應用認知彈性的能力就能夠順利通過切換後階段,因此額葉的活化程度就不顯著;至於作業一的口語指導,沒有給予幼兒任何與切換後階段有關的分類引導,因此在切換後階段幼兒的額葉沒有足夠的認知彈性能力,活化程度也就不顯著,同時也導致幼兒無法成功通過切換後階段。雖然大腦資料的統計結果尚存在不確定的推論,但對於Brace 等 (2006) 的研究假設:鷹架指導能減低幼兒工作記憶負荷量,具有一定的支持性。

    Executive function plays a crucial role in human development, particularly influencing future academic achievement, and it rapidly develops in the first five years of life. One aspect of executive function is cognitive flexibility. Numerous studies indicate that most children under 5 years old fail to successfully switch rules in the Dimensional Change Card Sorting task (DCCS task), a classic measure of cognitive flexibility. Therefore, many scholars use the DCCS task to explore factors related to children's task failure. Cognitive flexibility is built upon inhibitory control and working memory. The current study is based on Morton and Munakata (2002) and investigates the relationship between working memory load and the degree of prefrontal cortex activation. The current study uses the DCCS task designed according to Brace et al. (2006) hypothesizes that children who successfully pass the post-switch phase do so through scaffolding guidance that reduces working memory load. To test this hypothesis, we recruited 44 typically developing children (22 boys, 22 girls), aged between 36 and 53 months (M = 43.1, SD = 5.7) in Taipei. All children participated in both conditions of the DCCS task, i.e., the control condition and the scaffolding condition. To measure children’s brain activation during the DCCS task, functional near-infrared spectroscopy (fNIRS) was used to detect changes in oxygenated hemoglobin concentration in children’s prefrontal cortex. It was hypothesized that there would be a significant relationship between working memory load and changes in oxygenated hemoglobin concentration.
    In terms of children’s behavioral performance, we found that they successfully passed the post-switch phase in the scaffolding condition, which is consistent with the findings of Brace et al. (2006). However, the children showed neither significant brain activations nor a significant difference in brain activation between the two conditions. We argue that young children were able to form a new sorting rule in the scaffolding condition with the help of the guidance given to them. Hence, their success in the post-switch phase did not tap on cognitive flexibility, leading to a non-significant frontal activation in the scaffolding condition. With regard to the control condition, since children were not given any relevant guidance, they were unable to switch from the previous rule to the new rule. Therefore, they failed in the post-switch phase, leading to non-significant frontal activations in this condition. Based on our behavioral findings, we conclude that the hypothesis of Brace et al. (2006) that scaffolding can reduce young children’s working memory load is supported to a certain extent.

    第一章 緒論 1 第一節 研究動機 1 研究問題與假設 4 第二節 名詞釋義 5 第二章 文獻探討 7 第一節 執行功能 7 第二節 認知彈性 10 第三節 功能性近紅外光譜儀與DCCS 作業 16 第四節 小結 20 第三章 研究方法 21 第一節 研究架構 21 第二節 研究對象 22 第三節 研究工具 23 第四節 研究流程 28 第四章 研究分析結果 29 第一節 行為表現分析 29 第二節 大腦資料分析 33 第三節 綜合討論與研究限制 36 第五章 結論與建議 38 第一節 研究結論 38 第二節 研究貢獻與建議 39 參考文獻 40 附錄 52

    壹、中文部分
    王馨敏、李俊仁、張鑑如(2020)。二至五歲幼兒認知發展家長問卷之編製。測驗學刊, 62(4),279-302。
    王馨敏、吳淑娟、李俊仁、曾志朗、李如蕙(2020)。從認知科學觀點進行醫療體系推動非都會區幼兒早期親子共讀介入成效的長期追蹤評估研究〔未出版手稿〕。
    貳、英文部分
    Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 71-82. https://doi.org/10.1076/chin.8.2.71.8724
    Armbruster, D. J., Ueltzhöffer, K., Basten, U., & Fiebach, C. J. (2012). Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. Journal of Cognitive Neuroscience, 24(12), 2385-2399. https://doi.org/10.1162/jocn_a_00286
    Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. https://doi.org/10.1126/science.1736359
    Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation (Vol. 8, pp. 47-89): Elsevier.
    Badre, D., & Wagner, A. D. (2006). Computational and neurobiological mechanisms underlying cognitive flexibility. Proceedings of the National Academy of Sciences, 103(18), 7186-7191. https://doi.org/10.1073/pnas.0509550103
    Bartocci, M., Winberg, J., Ruggiero, C., Bergqvist, L. L., Serra, G., & Lagercrantz, H. (2000). Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study. Pediatric Research, 48(1), 18-23. https://doi.org/10.1203/00006450-200007000-00006
    Bialystok, E., & Martin, M. M. (2004). Attention and inhibition in bilingual children: Evidence from the dimensional change card sort task. Developmental Science, 7(3), 325-339. https://doi.org/10.1111/j.1467-7687.2004.00351.x
    Brace, J. J., Morton, J. B., & Munakata, Y. (2006). When actions speak louder than words: Improving children's flexibility in a card-sorting task. Psychological Science, 17(8), 665-669. https://doi.org/10.1111/j.1467-9280.2006.01763.x
    Brooks, P. J., Hanauer, J. B., Padowska, B., & Rosman, H. (2003). The role of selective attention in preschoolers’ rule use in a novel dimensional card sort. Cognitive Development, 18(2), 195-215. https://doi.org/10.1016/S0885-2014(03)00020-0
    Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28(2), 595-616. https://doi.org/10.1207/s15326942dn2802_3
    Carlsson, J., Lagercrantz, H., Olson, L., Printz, G., & Bartocci, M. (2008). Activation of the right fronto‐temporal cortex during maternal facial recognition in young infants. Acta Paediatrica, 97(9), 1221-1225. https://doi.org/10.1111/j.1651-2227.2008.00886.x
    Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., . . . Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102, 474-483. https://doi.org/10.1016/j.neuroimage.2014.08.008
    Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332. https://doi.org/10.1037/0033-295X.97.3.332
    Cope, M., & Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical and Biological Engineering and Computing, 26, 289-294. https://doi.org/10.1007/BF02447083
    Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571-578.
    Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037-2078. https://doi.org/10.1016/j.neuropsychologia.2006.02.006
    Davis, J. C., Marra, C. A., Najafzadeh, M., & Liu-Ambrose, T. (2010). The independent contribution of executive functions to health related quality of life in older women. BMC Geriatrics, 10(1), 16. https://doi.org/10.1186/1471-2318-10-16
    Di Lorenzo, R., Pirazzoli, L., Blasi, A., Bulgarelli, C., Hakuno, Y., Minagawa, Y., & Brigadoi, S. (2019). Recommendations for motion correction of infant fnirs data applicable to multiple data sets and acquisition systems. NeuroImage, 200, 511-527. https://doi.org/10.1016/j.neuroimage.2019.06.056
    Diamond, A. (1985). Development of the ability to use recall to guide action, as indicated by infants' performance on AB. Child Development, 868-883. https://doi.org/10.2307/1130099
    Diamond, A. (2013). Executive functions. Annual review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
    Diamond, A., & Taylor, C. (1996). Development of an aspect of executive control: Development of the abilities to remember what I said and to “Do as I say, not as I do”. Developmental Psychobiology, 29(4), 315-334. https://doi.org/10.1002/(SICI)1098-2302(199605)29:4%3C315::AID-DEV2%3E3.0.CO;2-T
    Engel de Abreu, P. M., Abreu, N., Nikaedo, C. C., Puglisi, M. L., Tourinho, C. J., Miranda, M. C., . . . Martin, R. (2014). Executive functioning and reading achievement in school: a study of Brazilian children assessed by their teachers as “poor readers”. Frontiers in Psychology, 5, 550. https://doi.org/10.3389/fpsyg.2014.00550
    Espy, K. A. (1997). The Shape School: Assessing executive function in preschool children. Developmental NeuroPsychology, 13(4), 495-499. https://doi.org/10.1080/87565649709540690
    Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465-486. https://doi.org/10.1207/s15326942dn2601_6
    Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of clinical and experimental Neuropsychology, 26(7), 874-890. https://doi.org/10.1080/13803390490510680
    Frye, D., David Zelazo, P., & Burack, J. A. (1998). Cognitive complexity and control: I. Theory of mind in typical and atypical development. Current Directions in Psychological Science, 7(4), 116-121. https://doi.org/10.1111/1467-8721.ep10774754
    Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychological Bulletin, 134(1), 31. https://doi.org/10.1037/0033-2909.134.1.31
    Genet, J. J., & Siemer, M. (2011). Flexible control in processing affective and non-affective material predicts individual differences in trait resilience. Cognition and Emotion, 25(2), 380-388. https://doi.org/10.1080/02699931.2010.491647
    Grassi, B., Quaresima, V., Marconi, C., Ferrari, M., & Cerretelli, P. (1999). Blood lactate accumulation and muscle deoxygenation during incremental exercise. Journal of Applied Physiology, 87(1), 348-355.
    Hock, C., Villringer, K., Müller-Spahn, F., Wenzel, R., Heekeren, H., Schuh-Hofer, S., . . . Dirnagl, U. (1997). Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near-infrared spectroscopy (NIRS)—correlation with simultaneous rCBF-PET measurements. Brain Research, 755(2), 293-303. https://doi.org/10.1016/S0006-8993(97)00122-4
    Holtzer, R., Mahoney, J. R., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Verghese, J. (2011). fNIRS study of walking and walking while talking in young and old individuals. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66(8), 879-887.
    Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54(4), 276-280. https://doi.org/10.1016/j.neures.2005.12.006
    Hughes, C. (1998). Executive function in preschoolers: Links with theory of mind and verbal ability. British Journal of Developmental Psychology, 16(2), 233-253. https://doi.org/10.1111/j.2044-835X.1998.tb00921.x
    Hughes, C., & Ensor, R. (2005). Executive function and theory of mind in 2 year olds: A family affair? Developmental Neuropsychology, 28(2), 645-668. https://doi.org/10.1207/s15326942dn2802_5
    Huizinga, M., Dolan, C. V., & Van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 2017-2036. https://doi.org/10.1016/j.neuropsychologia.2006.01.010
    Huizinga, M., & Smidts, D. P. (2010). Age-related changes in executive function: A normative study with the Dutch version of the Behavior Rating Inventory of Executive Function (BRIEF). Child Neuropsychology, 17(1), 51-66. https://doi.org/10.1080/09297049.2010.509715
    Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517-527. https://doi.org/10.1016/0028-3932(90)90031-I
    Issard, C., & Gervain, J. (2018). Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Developmental Cognitive Neuroscience, 33, 182-193. https://doi.org/10.1016/j.dcn.2018.01.009
    Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). Homer: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280-D298. https://doi.org/10.1364/AO.48.00D280
    Jacques, S., Zelazo, P. D., Kirkham, N. Z., & Semcesen, T. K. (1999). Rule selection versus rule execution in preschoolers: An error-detection approach. Developmental Psychology, 35(3), 770. https://doi.org/10.1037/0012-1649.35.3.770
    Kirkham, N. Z., Cruess, L., & Diamond, A. (2003). Helping children apply their knowledge to their behavior on a dimension‐switching task. Developmental Science, 6(5), 449-467. https://doi.org/10.1111/1467-7687.00300
    Kloo, D., & Perner, J. (2005). Disentangling dimensions in the dimensional change card‐sorting task. Developmental Science, 8(1), 44-56. https://doi.org/10.1111/j.1467-7687.2005.00392.x
    Kloo, D., Perner, J., Aichhorn, M., & Schmidhuber, N. (2010). Perspective taking and cognitive flexibility in the Dimensional Change Card Sorting (DCCS) task. Cognitive Development, 25(3), 208-217. https://doi.org/10.1016/j.cogdev.2010.06.001
    Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., & Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1(1), 80-84.
    Lloyd-Fox, S., Blasi, A., & Elwell, C. (2010). Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269-284. https://doi.org/10.1016/j.neubiorev.2009.07.008
    Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children. Neuroimage, 29(3), 706-711. https://doi.org/10.1016/j.neuroimage.2005.08.019
    Meek, J. (2002). Basic principles of optical imaging and application to the study of infant development. Developmental Science, 5(3), 371-380. https://doi.org/10.1111/1467-7687.00376
    Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of Neuroscience, 24(1), 167-202. https://doi.org/10.1146/annurev.neuro.24.1.167
    Miller, M. R., Giesbrecht, G. F., Müller, U., McInerney, R. J., & Kerns, K. A. (2012). A latent variable approach to determining the structure of executive function in preschool children. Journal of Cognition and Development, 13(3), 395-423. https://doi.org/10.1080/15248372.2011.585478
    Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
    Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of neuroscience, 21(19), 7733-7741.
    Monette, S., Bigras, M., & Lafrenière, M.-A. (2015). Structure of executive functions in typically developing kindergarteners. Journal of experimental child psychology, 140, 120-139. https://doi.org/10.1016/j.jecp.2015.07.005
    Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134-140. https://doi.org/10.1016/S1364-6613(03)00028-7
    Moriguchi, Y., & Hiraki, K. (2009). Neural origin of cognitive shifting in young children. proceedings of the National Academy of Sciences, 106(14), 6017-6021. https://doi.org/10.1073/pnas.0809747106
    Moriguchi, Y., & Hiraki, K. (2011). Longitudinal development of prefrontal function during early childhood. Developmental Cognitive Neuroscience, 1(2), 153-162. https://doi.org/10.1016/j.dcn.2010.12.004
    Moriguchi, Y., & Hiraki, K. (2013a). Behavioral and neural differences during two versions of cognitive shifting tasks in young children and adults. Developmental Psychobiology, 56(4), 761-769. https://doi.org/dx.doi.org/10.1002/dev.21145
    Moriguchi, Y., & Hiraki, K. (2013b). Prefrontal cortex and executive function in young children: a review of NIRS studies. Frontiers in Human Neuroscience, 7(867). https://doi.org/10.3389/fnhum.2013.00867
    Morton, J. B., & Munakata, Y. (2002). Active versus latent representations: A neural network model of perseveration, dissociation, and decalage. Developmental Psychobiology: The Journal of the international society for developmental psychobiology, 40(3), 255-265. https://doi.org/10.1002/dev.10033
    Munakata, Y., Morton, J. B., & Yerys, B. E. (2003). Children's perseveration: attentional inertia and alternative accounts. Developmental Science, 6(5), 471-473. https://doi.org/10.1111/1467-7687.00302
    Newton, R. H., & Meek, K. M. (1998). The integration of the corneal and limbal fibrils in the human eye. Biophysical Journal, 75(5), 2508-2512. https://doi.org/10.1016/S0006-3495(98)77695-7
    Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., . . . Kohyama, K. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99-111. https://doi.org/10.1016/j.neuroimage.2003.08.026
    Perner, J., Lang, B., & Kloo, D. (2002). Theory of mind and self‐control: More than a common problem of inhibition. Child Development, 73(3), 752-767. https://doi.org/10.1111/1467-8624.00436
    Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual review of Neuroscience, 13(1), 25-42. https://doi.org/10.1146/annurev.ne.13.030190.000325
    Shimada, S., & Hiraki, K. (2006). Infant's brain responses to live and televised action. Neuroimage, 32(2), 930-939. https://doi.org/10.1016/j.neuroimage.2006.03.044
    Taga, G., Asakawa, K., Hirasawa, K., & Konishi, Y. (2003). Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study. Early Human Development, 75, 203-210. https://doi.org/10.1016/j.earlhumdev.2003.08.023
    Tchanturia, K., Davies, H., Roberts, M., Harrison, A., Nakazato, M., Schmidt, U., . . . Morris, R. (2012). Poor cognitive flexibility in eating disorders: examining the evidence using the Wisconsin Card Sorting Task. PloS one, 7(1), e28331. https://doi.org/10.1371/journal.pone.0028331
    Thatcher, R. W. (1992). Cyclic cortical reorganization during early childhood. Brain and Cognition, 20(1), 24-50. https://doi.org/10.1016/0278-2626(92)90060-Y
    Toronov, V., Webb, A., Choi, J. H., Wolf, M., Michalos, A., Gratton, E., & Hueber, D. (2001). Investigation of human brain hemodynamics by simultaneous near‐infrared spectroscopy and functional magnetic resonance imaging. Medical Physics, 28(4), 521-527. https://doi.org/10.1118/1.1354627
    Usai, M. C., Viterbori, P., Traverso, L., & De Franchis, V. (2014). Latent structure of executive function in five-and six-year-old children: A longitudinal study. European Journal of developmental psychology, 11(4), 447-462. https://doi.org/10.1080/17405629.2013.840578
    Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20(10), 435-442. https://doi.org/10.1016/S0166-2236(97)01132-6
    Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processes. Harvard university press.
    Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44(2), 575. https://doi.org/10.1037/0012-1649.44.2.575
    Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of experimental child psychology, 108(3), 436-452. https://doi.org/10.1016/j.jecp.2010.08.008
    Willoughby, M. T., Blair, C. B., Wirth, R., & Greenberg, M. (2010). The measurement of executive function at age 3 years: psychometric properties and criterion validity of a new battery of tasks. Psychological Assessment, 22(2), 306. https://doi.org/10.1037/a0018708
    Willoughby, M. T., Wirth, R., & Blair, C. B. (2012). Executive function in early childhood: Longitudinal measurement invariance and developmental change. Psychological Assessment, 24(2), 418. https://doi.org/10.1037/a0025779
    Yamada, T., Umeyama, S., & Matsuda, K. (2009). Multidistance probe arrangement to eliminate artifacts in functional near-infrared spectroscopy. Journal of biomedical optics, 14(6), 064034. https://doi.org/10.1117/1.3275469
    Zelazo, P. D. (2006). The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. Nature Protocols, 1(1), 297-301. https://doi.org/10.1038/nprot.2006.46
    Zelazo, P. D., & Frye, D. (1998). Cognitive complexity and control: II. The development of executive function in childhood. Current Directions in Psychological Science, 7(4), 121-126. https://doi.org/10.1111/1467-8721.ep10774761
    Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11(1), 37-63. https://doi.org/10.1016/S0885-2014(96)90027-1
    Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. Blackwell handbook of childhood cognitive development, 445-469.
    Zelazo, P. D., Müller, U., Frye, D., Marcovitch, S., Argitis, G., Boseovski, J., ... & Carlson, S. M. (2003). The development of executive function in early childhood. Monographs of the society for research in child development, i-151.
    Zelazo, P. D., & Reznick, J. S. (1991). Age‐related asynchrony of knowledge and action. Child Development, 62(4), 719-735.
    Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). Fnirs optodes’ location decider (fold): A toolbox for probe arrangement guided by brain regions-of-interest. Scientific Reports, 8(1), 3341. https://doi.org/10.1038/s41598-018-21716-z

    下載圖示
    QR CODE