簡易檢索 / 詳目顯示

研究生: 廖建豪
Jian-Hao Liao
論文名稱: 簡化退火演算法基於模糊類神經網路控制器於非線性系統之控制
Reduced SA Fuzzy-neural Controller for Nonlinear Systems
指導教授: 呂藝光
Leu, Yih-Guang
王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 86
中文關鍵詞: 模擬退火演算法模糊類神經適應控制非線性控制
英文關鍵詞: simulated annealing algorithm, fuzzy neural networks, adaptive control, nonlinear systems
論文種類: 學術論文
相關次數: 點閱:166下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個利用簡化的模擬退火演算法來調整模糊類神經網路的參數,並將其應用於函數近似與非線性系統之適應控制器設計。此簡化的模擬退火演算法應用於適應控制器設計,不需要事先離線學習的程序和複雜的數學運算。相較於傳統非線性系統的適應控制器,可有效減少適應控制器所需複雜的數學運算。在非線性系統之適應控制過程中,模糊類神經控制器的權重値是經由模擬退火演算法來即時調整,以產生適當的控制輸入。為了即時評估閉迴路系統穩定的趨勢,本文從Lyapunov函數的推導過程中,提出一個能量成本函數於簡化的模擬退火最佳演算法中,藉著獲得較佳的閉迴路系統的穩定度。此外,由於簡化模擬退火法,可能在即時控制過程中使系統狀態進入不安全的區域。因此,加入監督控制器以限制閉迴路系統的狀態進入不安全的區域。
    本文藉由電腦模擬結果驗證所提出方法的可行性與效能。最後,將此模糊類神經控制器應用在直流伺服馬達追蹤控制實驗。

    In this thesis, a reduced simulated annealing algorithm used to tune the parameters of fuzzy neural networks is proposed for function approximation and adaptive control of nonlinear systems. For the design of adaptive controller, the reduced simulated annealing algorithm does not require the procedure of off-line learning and the complicated mathematical form. Compared with traditional adaptive controllers, computation loading can be effectively alleviated. In adaptive control procedure for nonlinear systems, the weights of the fuzzy neural controller are online adjusted by the reduced simulated annealing algorithm in order to generate the appropriate control input. For the purpose of on-line evaluating the stability of the closed-loop systems, an energy cost function derived from Lyapunov function is involved in the reduced simulated annealing algorithm. In addition, the system states may go into the unsafe region if the reduced simulated annealing algorithm can not instantaneously generate the appropriate weights. In order to guarantee the stability of the closed-loop nonlinear system, a supervisory controller is incorporated into the fuzzy neural controller.
    Finally, some computer simulation examples and a servo motor experiment are provided to demonstrate the feasibility and effectiveness of the proposed method.

    Contents ABSTRACT I 摘 要 III 誌  謝 IV List of Figures VII List of Tables X Chapter 1 Introductions 1 1.1 Background 1 1.2 Motivation and Major Works 3 1.3 Thesis Overview 4 Chapter 2 Evolutionary Learning of Fuzzy-Neural Networks Using a Reduced Simulated Annealing Optimization Algorithm 7 2.1 Fuzzy-Neural Networks 7 2.2 Reduced Simulated Annealing Optimization (RSAO) Algorithm for Off-line Learning 9 2.3 Simulation 11 2.4 Conclusions 22 Chapter 3 Indirect RSA On-Line Tuning of Fuzzy-Neural Networks for Uncertain Nonlinear Systems 23 3.1 Problem Formulation 23 3.1.1 The Design of Certainty Equivalent Controller 23 3.1.2 Supervisory Control 26 3.2 Description of Reduce Simulated Annealing Algorithm for On-line Controllers 27 3.3 Simulation Examples of the RIAFC 29 3.4 Conclusions 35 Chapter 4 Backstepping Adaptive Control of Uncertain Nonlinear Systems Using RSA On-Line Tuning of Fuzzy-Neural Networks 37 4.1 Problem Formulation 37 4.1.1 The Design of Backstepping Controller 37 4.1.2 On-line Learning of Fuzzy-Neural Backstepping Control Using RSAOA 40 4.2 Simulation Examples of the RBAFC 43 4.3 Conclusions 49 Chapter 5 Design of Fuzzy-neural Controller Using Reduce Simulated Annealing Algorithms for MIMO Nonlinear Systems 50 5.1 Problem Formulation and Fuzzy-Neural Networks 50 5.1.1 Problem Formulation and Backstepping Control Design 50 5.1.2 Description of MIMO Fuzzy-neural Networks 53 5.2 Development of Simulated Annealing Adaptive Fuzzy-neural Control Scheme 54 5.3 Simulation Examples 57 5.4 Conclusions 62 Chapter 6 Design of Fuzzy-neural Controllers for DC Servo motors Using Reduced Simulated Annealing Algorithms 64 6.1 Problem Description of DC Servo Motors 64 6.2 Simulation Results 66 6.3 The Hardware Structure and Experimental Results 70 6.4 Conclusions 77 Chapter 7 Summaries and Suggestions for Future Research 78 7.1 Summaries 78 7.2 Suggestions for Future Research 79 References 80

    [1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators, ” Neural Networks, no. 2, pp. 359-366, 1989.
    [2] L. X. Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, 1994.
    [3] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control, ” IEEE Transactions on Systems Man and Cybernetics, Vol. 25, No. 5, pp. 841-851, May 1995.
    [4] W. Y. Wang, Y.H. Chien, and I.H. Li, “ An On-Line Robust and Adaptive T-S Fuzzy-Neural Controller for More General Unknown Systems,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 33-43, 2008.
    [5] C. T. Lin, and L. Siana, “An Efficient Human Detection System Using Adaptive Neural Fuzzy Networks,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 150-160, 2008.
    [6] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Transactions on Fuzzy Systems, Vol. 9, pp.578-594, 2001.
    [7] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems,” IEEE Transactions On Robotics and Automation, Vol. 15, No. 5, pp. 805-817, October 1999.
    [8] Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line tuning of fuzzy neural network for adaptive control of nonlinear dynamic systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 27, pp. 1034–1043, Dec. 1997.
    [9] T. Y. Kim and J. H. Han, “Edge representation with fuzzy sets in blurred images,” Fuzzy Sets Syst., vol. 100, pp. 77–87, 1998.
    [10] Z. Yang, T. Hachino, and T. Tsuji, “Model reduction with time delay combining the least-squares method with the genetic algorithm, ” IEE Proc. Control Theorem Appl., vol. 143, no. 3, 1996.
    [11] W.Y. Wang, Y.G. Leu, and T.T. Lee, "Output-feedback control of nonlinear systems using direct adaptive fuzzy-neural controller,” Fuzzy Sets and Systems 140, pp. 341-358, 2003.
    [12] W. Y. Wang, M. L. Chan, T. T. Lee, and C. H. Liu, “Recursive Back-stepping Design of Adaptive Fuzzy Controller for Strict Output Feedback Nonlinear Systems,” Asian Journal of Control, Vol. 4, No.3, Sept. 2002.
    [13] W. Y. Wang, M. L. Chan, C. C. Hsu, and T. T. Lee, “ Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems via an Adaptive Fuzzy-Neural Approach,” IEEE Trans. on System Man and Cybernetics-Part B, Vol. 32, No.4, pp.483-492. 2002.
    [14] L. X. Wang, “A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. On Automatic Control, Vol. 39, No. 9, pp.1845-1847, 1994.
    [15] Y.G. Leu, T.T. Lee, and W.Y. Wang, "Observer-based Adaptive Fuzzy-Neural Control for Unknown Nonlinear Dynamical Systems," IEEE Trans. Syst. Man, Cyber. Part B: Cybernetics, vol. 29, no. 5, pp.583-591, Oct., 1999.
    [16] C.H. Wang, H.L. Liu, T.C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no.1, pp.39-49, 2002.
    [17] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, no. 2, pp. 359-366, 1989.
    [18] Li-Xin Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, 1994.
    [19] 感應機向量控制驅動器之PID控制器調適 王進力 淡江大學 電機工程學系
    [20] S Kirkpatrick, CD Gelatt Jr, MP Vecchi, “Optimization by Simulated Annealing,” Science Vol. 220. no. 4598, pp. 671 – 680, 1983
    [21] J. Sheild, ‘”Partitioning concurrent VLSI simulation programs onto a multiprocessor by simulated annealing,”IEE PROCEEDINGS, vol.134, Pt.E,NO.1,JANURAY 1987.
    [22] K. Kurbel, B. Schneider, and K. Singh, “Solving Optimization Problems by Parallel Recombinative Simulated Annealing on a Parallel Computer-An Application to Standard Cell Placement in VLSI Design, ” IEEE Transactions on Systems, MAN, AND CYBERNETICS-PART B: CYBERNETICS, vol. 28, on,3, pp. 454-461, JUNE 1998.
    [23] M. Gao, and J. Tian, “Path Planning for Mobile Robot Based on Improved Simulatded Annealing Artificial Neural Network,” Third International Conference on Natural Computation, 2007.
    [24] P. Lucidarme, and A. Liegeois, “Learning Reactive Neuroconrtollers using Simulated Annealing for Mobile Robots,” Intf. Conference on Intelligent Robots and Systems, Oct. 2003.
    [25] Y. Wang, W. Yan, and G. Zhang, “Adaptive Simulated Annealing for the optimal of Electromagnetic Devices,” IEEE Transactions on MAGNETICS, vol. 32, no.3, pp.1214–1217, May 1996.
    [26] A. F. Atiya, A. G. Parlos, and L. Ingber, ”A Reinforcement Learning Method Based on Adaptive Simulated Annealing,” IEEE Circuits and Systems , vol. 1, pp.121–124, Dec. 2003.
    [27] L. Ingber “Very fast simulated re-annealing,” Mathematical Computer Modelling, vol.12, no.8, pp. 967-973, 1989.
    [28] S. J. Ho, L. S. Shu, and S. Y. Ho, “Optimizing Fuzzy Neural Networks for Tuning PID Controllers Using an Orthogonal Simulated Annealing Algorithm OSA,” IEEE Tranactions on Fuzzy Systems,vol.14,no.3,JUNE 2006.
    [29] W.K. Ho, C.C.Hang,and J. Zhou,“Self-tuning PID control of a plant with under-dampd response with specifications on gain and phase margins, ”IEEE Trans. Control Syst. Technol .,vol.5, no.4, pp.446-452, Jul.1997.
    [30] S. J.Ho, S. Y. Ho, and L.S. Shu, “OSA:orthogonal simulated annealing algorithm and its application to designing mixed H2/ optimal controllers,” IEEE Trans.Syst.,Man,Cybern.A,Syst. Humans, vol. 34, no. 5, pp.588-600,Sep.2004.
    [31] S. Y. Ho, S.J.Ho,Y.k.Lin and C.C.W.Chu, “An orthogonal simulated annealing algorithm for large floorplanning problems,” IEEE Trans. Very Large Scale(VLSI)Syst., vol. 12, no. 8, pp.874-876,Aug. 2004.
    [32] W. Y. Wnag, and Y. H. Li, “Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm,” IEEE Trans. on Systems, Man and Cybernetics ,part B vol. 33, pp.966-976, 2003.
    [33] R.A. Krohling, and J.P. Ray, “Design of optimal disturbance rejection PID controllers using genetic algorithms,” IEEE Trans. Evol.Comput., vol. 5, no. 1, pp.78-82,Feb. 2001.
    [34] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,A. H. Teller,and E. Teller,“Equation of state calculations by fast computing machines,” J.Chem.Phys., vol. 21, no. 6, pp.1087-1092,1953.
    [35] T. Renyuan, S.Jianzhong, and L.Yan,”Optimization of electromagnetic devices by using intelligent simulated annealing algorithm,” IEEE Trans. Magn.,vol.34,no.5,pp.2992-2995,Sep.1998.
    [36] H. Szu and R. Hartley, “Fast simulated annealing,”Phys.Lett.,vol.122,pp. 157-162,1987.
    [37] S.Yang, J.M.Machado,G.Ni,S.L.Ho,and P.Zhou,”A self-learning simulated annealing algorithm for global optimizations of electromagnetic devices,”IEEE Trans. Magn.,vol.36,no.7,pp.1004-1008,Jul.2000.
    [38] M. Zhaung and D. P. Atherton, “Automatic tuning of optimal PID controllers,” Proc. Inst. Elect. Eng.,D, vol. 140, pp. 216-224, 1993.
    [39] Y. S. Ahmed, S. Tomonobu, M. Tsukasa, U. Naomitsu, and F. Toshihisa, ”Fuzzy Unit Commitment Scheduling Using Absolutely Stochastic Simulated Annealing,” IEEE Transactions on power systems, vol. 21, no. 2, May 2006.
    [40] T. Satoh, and K. Nara, “Maintenance scheduling by using simulated annealing method [for power plants ,” IEEE Trans. Power Syst., vol. 6, no.2, pp. 850-857, May 1991.
    [41] S. Y. W. Wang, “An enhanced simulated annealing approach to unit commitment,” Elect. Power Energy Syst., vol. 20, pp. 359-368, May 1998.
    [42] F. Zhuang and F. D. Galiana, ”Unit commitment by simulated annealing,” IEEE Trans. Power Syst., vol. 5, no.1, pp. 311-318, Feb. 1990.
    [43] A. H. Mantawy, Y. L. Abel-Mogid, and S.Z. Selim, “A simulated annealing algorithm for unit commitment,” IEEE Trans. Power Syst., vol. 13, no.1, pp. 197-204, Feb. 1998.
    [44] C. P. Cheng, C. W. Liu and C.C. Liu,” Unit commitment by simulated annealing algorithms,” Elect. Power Energy Syst., Vol. 24, PP. 149 –158, 2000.
    [45] M. M. El-Saadawi, M. A. Tantawi, and E. Tawfik, “A fuzzy optimization based approach to large scale thermal unit commitment,” Elect. Power Syst. Res.,Vol. 72, pp.245–252, 2004.
    [46] D. W. Jeffrey,” A simulated annealing algorithm for optimizing RF power efficiency in coupled-cavity traveling-wave tubes,” IEEE Transactions onelectron devices, Vol. 44, No. 12, Dec. 1997.
    [47] S. Kirkpatrick, C. D. Gelatt Jr.,and M. P. Vecchi,”Optimization by simulated annealing,”Science, Vol.220, pp. 671-680, May 1983.
    [48] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines.New York: Wiley, 1989, pp. 88-91.
    [49] A. Isidori, Nonlinear Control System. New York: Springer-Verlag, 1989.
    [50] M. Krstic, I. Kanellakopoulos, and P.V.Kokotovic, Nonlinear and Adaptive Control Design. New York: Wiley, 1995.
    [51] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controller for feedback linearizable system,” IEEE Transactions Automat. Contr., vol. 36, pp. 1241–1253, 1991.
    [52] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE Transactions Syst., Man, Cybern. A, vol. 30, pp. 753–765, 2000.
    [53] T. Knohl and H. Unbehauen, “ANNNAC—extension of adaptive backstepping algorithm with artificial neural networks,” Inst. Elect. Eng. Proc. Contr. Theory Appl., vol. 147, pp. 177–183, 2000.
    [54] C. M. Kwan and F. L. Lewis, “Robust backstepping control of induction motors using neural networks,” IEEE Transactions Neural Networks, vol. 11, pp. 1178–1187, 2000.
    [55] J. Y. Choi and J. A. Farrell, “Adaptive observer backstepping control using neural networks,” IEEE Transactions Neural Networks, vol. 12, pp. 1103–1112, 2001.
    [56] Y. Zhang, P.Y. Peng, and Z.P. Jiang, “Stable Neural Controller Design for Unknown Nonlinear Systems Using Backstepping,” IEEE Transactions on Neural Networks, vol. 11, no. 6, November 2000.
    [57] C.F. Hsu, C.M. Lin, and T.T. Lee, “Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems,” IEEE Transactions on Neural Networks, vol. 17, no. 5, September 2006.
    [58] S. S. Sastry and A. Isidori, “Adaptive control of linearization systems,” IEEE Transactions Automat. Contr., vol. 34, pp. 1123–1131, 1989.
    [59] R. Marino and P. Tomei, “Globally adaptive output-feedback control of nonlinear systems, part I: Linear parameterization,” IEEE Transactions Automat. Contr., vol. 38, pp. 17–32, Jan. 1993.
    [60] R. Marino and P. Tomei, “Globally adaptive output-feedback control of nonlinear systems, part II: Nonlinear parameterization,” IEEE Transactions Automat. Contr., vol. 38, pp. 33–48, Jan. 1993.
    [61] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions Automat. Contr., vol. 36, pp. 1241–1253, Nov. 1991.
    [62] W. Y. Wang, M. L. Chan, T. T. Lee, and C. H. Liu, “Recursive Back-stepping Design of Adaptive Fuzzy Controller for Strict Output Feedback Nonlinear Systems,” Asian Journal of Control, Vol. 4, No.3, Sept. 2002.
    [63] L. X. Wang, “A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. On Automatic Control, Vol. 39, No. 9, pp.1845-1847, 1994.
    [64] Y.G. Leu, T.T. Lee, and W.Y. Wang, "Observer-based Adaptive Fuzzy-Neural Control for Unknown Nonlinear Dynamical Systems," IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, vol. 29, no. 5, pp.583-591, Oct., 1999.
    [65] C.H. Wang, H.L. Liu, T.C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no.1, pp.39-49, 2002.
    [66] W. Y. Wang, C. Y. Cheng, and Y. G. Leu, “An online GA-based output-feedback direct adaptive fuzzy-neural controller for nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, pp.334-345, February. 2004.
    [67] 結合基因演算法和模擬退火法在機組排程決策之應用 張振松 南開技術學院資管系
    [68] J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.
    [69] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [70] Y. Tang, M. Tomizuka, G. Guerrero, and G. Montemayor, “Decentralized robust control of mechanical systems,” IEEE Trans. Automat.Contr.,vol. 45, pp. 771-776, Apr.2000.

    下載圖示
    QR CODE