研究生: |
陳玥希 Chen, Yueh-Hsi |
---|---|
論文名稱: |
探討漸進式熱預處理以及缺血預處理於大鼠心肌缺血再灌流損傷之保護作用 Protective Role of Progressive Thermal Preconditioning and Ischemic Preconditioning against Myocardial Ischemia Reperfusion Injury in Rats |
指導教授: |
鄭劍廷
Chien, Chiang-Ting |
口試委員: |
楊芝青
Yang, Chi-Cheng 張博淵 Chang, Po-Yuan 徐世平 Hsu, Shih-Ping 林豊益 Lin, Li-Yih 鄭劍廷 Chien, Chiang-Ting |
口試日期: | 2022/07/08 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 心肌缺血/再灌流 、冠狀動脈左前降支 、漸進式熱預處理 、三階段式熱預處理 、缺血預處理 、細胞凋亡 、炎症 、鐵依賴性細胞死亡 、鐵凋亡 |
英文關鍵詞: | Myocardial Ischemia/Reperfusion, Left Anterior Descending Coronary Artery, Progressive Thermal Preconditioning, Triple Progressive Thermopreconditioning, Ischemic Preconditioning, Apoptosis, Inflammation, Iron-dependent Cell Death, Ferroptosis |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201491 |
論文種類: | 學術論文 |
相關次數: | 點閱:201 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
缺血性心臟病是世界主要致死原因之一。當冠狀動脈遭到堵塞時,產生急性心肌梗塞,導致血管下游組織缺血、供氧減少而促使心臟組織走向死亡。對於這樣的清況,公認的治療方法為通過原發性冠狀動脈介入治療來恢復血流使其恢復含氧。然而,恢復含氧血流卻相反地會誘導心肌細胞死亡並增加梗死面積,從而降低其效益,這便是所謂的缺血/再灌流損傷。心肌可以藉由預處理、後處理和藥物預處理達到保護效果。全身性的漸進式熱預處理(PTP)可能具有產生抗氧化壓力的心臟保護作用,可有效減少細胞凋亡,並降低缺血/再灌流損傷的情形。在缺血預處理(IPC)的部分,長期缺血前給予短時間的缺血處理已被公認為有效預防缺血/再灌流損傷的心臟保護機制之一。
熱預處理和缺血預處理這兩種不同的預處理類型都可以提供心血管保護,任何一種應用都可以在心肌I/R損傷後保持心臟微血管的功能和結構完整性。然而,在 PTP 中更有效的保護作用仍有待探索,例如三重漸進式熱預處理 (3PTP),它能夠提供比單一熱預處理更有效的心血管保護,並可能維持缺血/再灌流損傷後心臟微血管的功能和結構完整性。與細胞凋亡、自噬、壞死等其他形式的細胞死亡不同,依賴鐵的程序性細胞死亡是一種新型的細胞死亡方式,也是包含心血管疾病、I/R 損傷等疾病研究的新指標。在本次研究中,我們應用了兩種不同類型的預處理,3PTP 和 IPC分別來保護心臟功能,旨在研究它們對心臟 I/R 中心肌結構、細胞凋亡、炎症和鐵凋亡的保護機制。
在心肌缺血/再灌流損傷模型當中,大鼠通過閉塞冠狀動脈左前降支使其經歷60分鐘的缺血然後疏通血管再灌注240分鐘,並同時檢測血流動力學參數,包括心電圖、微循環、心率、左心室舒張末期壓、心室腔內壓力的心室血壓的最大上升速率 (+dp/dt) 和血壓最大下降速率 (-dp/dt)。心肌梗塞的大小通過 Evans blue-TTC 染色方式檢測。通過西方墨點法和組織免疫染色確定預處理誘導的生化保護機制。
在我的結果中顯示心肌缺血/再灌流會抑制心臟的微循環,誘導心電圖 S-T 段升高,增加鐵依賴性細胞死亡模式發生、紅血球聚集、白細胞和巨噬細胞/單核細胞浸潤、梗塞面積增加、白血球生長因子和TUNEL檢測的陽性反應增加。而在接受預處理的保護方法後能產生抵抗心肌缺血/再灌流傷害的心臟保護效果,包含+dp/dt的數值回升,左心室舒張末期壓改善,紅血球、白血球浸潤現象和TUNEL檢測的陽性反應減低,心臟組織破碎化和梗塞面積降低,以及鐵依賴性細胞死亡指標蛋白減少。總言之,本研究確定了 IPC在 I/R 誘導的心臟損傷的情況下,能提供對抗鐵依賴性細胞死亡的心臟保護作用。以及,經過改良的 3PTP 可能通過 Bag3 介導的受損心臟結構和功能完整性的保護機制,對 I/R 損傷的心臟提供了防禦效果。因此可認為,三階段式熱預處理(3PTP)及缺血預處理(IPC)的治療方式能減輕心肌缺血/再灌流傷害下的左心室結構惡化和功能障礙。
Ischemic heart disease is a leading cause of death worldwide. The occlusions of the coronary arteries lead to the ischemia that causes the decrease in oxygen supply and generates an acute myocardial infarction. Primary percutaneous coronary intervention has been recognized as the common treatment to recover blood flow and achieve reoxygenation. The reoxygenation paradoxically induces the death of cardiomyocytes and increases the infarct size, as known as ischemia/reperfusion (I/R) injury. Myocardial protection can be achieved by the methods of preconditioning, postconditioning and pharmacologic preconditioning. Among these methods, whole-body hyperthermia through progressive thermal preconditioning (PTP) has the protective effect against oxidative stress, which may have cardioprotective properties against I/R injury via diminishing apoptosis. According to previous evidence, ischemic preconditioning (IPC) has been recognized as one of the effective cardioprotective mechanisms to prevent I/R injury.
PTP and IPC can provide cardiovascular protection, either application can preserve the function and the structural integrity of cardiac microvasculature after myocardial I/R injury. However, the more effective protective role in PTP remains to be explored, like triple progressive thermopreconditioning (3PTP), which can provide more effective cardiovascular protection than single thermal preconditioning. Differs from other forms of cell death such as apoptosis, autophagy, and necrosis, programmed cell death dependent on iron is a new type of cell death. It is also a new indicator for disease research, including cardiovascular disease after cardiac I/R injury. In this study, we applied two different types of preconditioning, 3PTP and IPC, to protect cardiac function, aiming to investigate their protective mechanisms against myocardial structure, apoptosis, inflammation, and ferroptosis in heart I/R.
In the model of myocardial I/R injury, rats underwent 60 minutes of ischemia by the occlusion of left anterior descending coronary artery, and were followed by 240 minutes reperfusion. Hemodynamic parameters including the electrocardiogram, microcirculation, heart rate (HR), left ventricular end-diastolic pressure (LVEDP), maximal rate of rise in blood pressure in the ventricular chamber (+dp/dt), and maximal rate of decline in blood pressure in the ventricular chamber (-dp/dt) were determined. Myocardial infarct size was evaluated by the Evans blue-TTC method. Preconditioning-induced protective mechanisms were determined by Western blot and immunohistochemistry.
Cardiac I/R depressed cardiac microcirculation, induced S-T segment elevation, increased infarct size, and increased the phenomena including iron-dependent cell death, erythrocyte accumulation, leukocytes infiltration, macrophage/monocyte infiltration, granulocyte colony-stimulating factor (G-CSF), and TUNEL positive cells. Preconditioning strategies evoked significant cardio-protections against I/R injury, which were characterized by the increase in +dp/dt value, the improvement of LVEDP, and the decrease in erythrocyte and leukocyte infiltration, TUNEL-positive cells, fragmentation and infarct area, and iron-dependent cell death marker. In summary, these findings identified the protective effect of IPC against iron-dependent cardiomyocyte death after cardiac I/R injury. Furthermore, the modified 3PTP provided cardioprotective effect against I/R injury and preserved the structural and functional integrity of damaged heart possibly by the Bag3-mediated mechanism, which co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins. In conclusion, the strategies of 3PTP and IPC can alleviate the left ventricular structural deterioration and dysfunction caused by I/R injury.
1. Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B: Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem cell reviews and reports 2022.
2. Hou Y, Huang C, Cai X, Zhao J, Guo W: Improvements in the establishment of a rat myocardial infarction model. The Journal of international medical research 2011, 39(4):1284-1292.
3. Niccoli G, Scalone G, Lerman A, Crea F: Coronary microvascular obstruction in acute myocardial infarction. European heart journal 2016, 37(13):1024-1033.
4. Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, Nordbeck P, Geisler T, Landmesser U, Skurk C et al: PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. The New England journal of medicine 2017, 377(25):2419-2432.
5. Lian WS, Lin H, Cheng WT, Kikuchi T, Cheng CF: Granulocyte-CSF induced inflammation-associated cardiac thrombosis in iron loading mouse heart and can be attenuated by statin therapy. Journal of biomedical science 2011, 18:26.
6. Song H, Yan C, Tian X, Zhu N, Li Y, Liu D, Liu Y, Liu M, Peng C, Zhang Q et al: CREG protects from myocardial ischemia/reperfusion injury by regulating myocardial autophagy and apoptosis. Biochimica et biophysica acta Molecular basis of disease 2017, 1863(8):1893-1903.
7. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ: Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2018, 46(4):1650-1667.
8. Cowled P, Fitridge R: Pathophysiology of Reperfusion Injury. In: Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. edn. Edited by Fitridge R, Thompson M. Adelaide (AU): University of Adelaide Press © The Contributors 2011.; 2011.
9. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y: Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Progress in neurobiology 2014, 114:58-83.
10. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R: Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological reviews 2014, 66(4):1142-1174.
11. Chen YH, Chiang CY, Chang TC, Chien CT: Multiple Progressive Thermopreconditioning Improves Cardiac Ischemia/Reperfusion-induced Left Ventricular Contractile Dysfunction and Structural Abnormality in Rat. Transplantation 2020, 104(9):1869-1878.
12. Chien CY, Chien CT, Wang SS: Progressive thermopreconditioning attenuates rat cardiac ischemia/reperfusion injury by mitochondria-mediated antioxidant and antiapoptotic mechanisms. J Thorac Cardiovasc Surg 2014, 148(2):705-713.
13. Li PC, Yang CC, Hsu SP, Chien CT: Repetitive progressive thermal preconditioning hinders thrombosis by reinforcing phosphatidylinositol 3-kinase/Akt-dependent heat-shock protein/endothelial nitric oxide synthase signaling. J Vasc Surg 2012, 56(1):159-170.
14. McCormick P, Chen G, Tlerney S, Kelly C, Bouchier-Hayes D: Clinically relevant thermal preconditioning attenuates ischemia-reperfusion injury. Journal of Surgical Research 2003, 109(1):24-30.
15. Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R: The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. Journal of molecular and cellular cardiology 1992, 24(8):895-907.
16. Kubota K, Tamura K, Take H, Kurabayashi H, Shirakura T: Acute myocardial infarction and cerebral infarction at Kusatsu-spa. Nihon Ronen Igakkai zasshi Japanese journal of geriatrics 1997, 34(1):23-29.
17. Okada M, Hasebe N, Aizawa Y, Izawa K, Kawabe J, Kikuchi K: Thermal treatment attenuates neointimal thickening with enhanced expression of heat-shock protein 72 and suppression of oxidative stress. Circulation 2004, 109(14):1763-1768.
18. Sobajima M, Nozawa T, Ihori H, Shida T, Ohori T, Suzuki T, Matsuki A, Yasumura S, Inoue H: Repeated sauna therapy improves myocardial perfusion in patients with chronically occluded coronary artery-related ischemia. International journal of cardiology 2013, 167(1):237-243.
19. Iliodromitis EK, Lazou A, Kremastinos DT: Ischemic preconditioning: protection against myocardial necrosis and apoptosis. Vascular health and risk management 2007, 3(5):629-637.
20. Iliodromitis EK, Gaitanaki C, Lazou A, Aggeli IK, Gizas V, Bofilis E, Zoga A, Beis I, Kremastinos DT: Differential activation of mitogen-activated protein kinases in ischemic and nitroglycerin-induced preconditioning. Basic research in cardiology 2006, 101(4):327-335.
21. Schreckenberg R, Bencsik P, Weber M, Abdallah Y, Csonka C, Gömöri K, Kiss K, Pálóczi J, Pipis J, Sárközy M et al: Adverse Effects on β-Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Long-Term Cardiac Function. Journal of the American Heart Association 2017, 6(12).
22. Przyklenk K: Ischemic preconditioning. Journal of thrombosis and thrombolysis 2000, 9(1):99-103.
23. Yellon DM, Downey JM: Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiological reviews 2003, 83(4):1113-1151.
24. Kurzelewski M, Czarnowska E, Maczewski M, Beresewicz A: Effect of ischemic preconditioning on endothelial dysfunction and granulocyte adhesion in isolated guinea-pig hearts subjected to ischemia/reperfusion. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 1999, 50(4):617-628.
25. Zhao ZQ, Vinten-Johansen J: Myocardial apoptosis and ischemic preconditioning. Cardiovascular research 2002, 55(3):438-455.
26. Maulik N, Engelman RM, Rousou JA, Flack JE, 3rd, Deaton D, Das DK: Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation 1999, 100(19 Suppl):Ii369-375.
27. Camaschella C: New insights into iron deficiency and iron deficiency anemia. Blood reviews 2017, 31(4):225-233.
28. Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L: Mechanisms of mammalian iron homeostasis. Biochemistry 2012, 51(29):5705-5724.
29. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P: Ferroptosis: mechanisms and links with diseases. Signal transduction and targeted therapy 2021, 6(1):49.
30. Jiang X, Stockwell BR, Conrad M: Ferroptosis: mechanisms, biology and role in disease. Nature reviews Molecular cell biology 2021, 22(4):266-282.
31. Qin Y, Qiao Y, Wang D, Tang C, Yan G: Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2021, 141:111872.
32. Ying H, Shen Z, Wang J, Zhou B: Role of iron homeostasis in the heart : Heart failure, cardiomyopathy, and ischemia-reperfusion injury. Herz 2021.
33. Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, Watanabe S, Komada T, Kimura H, Sanada Y et al: Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2020, 20(6):1606-1618.
34. Kontoghiorghes GJ, Kolnagou A, Skiada A, Petrikkos G: The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies. Hemoglobin 2010, 34(3):227-239.
35. Cottin Y, Doise JM, Maupoil V, Tannière-Zeller M, Dalloz F, Maynadié M, Walker MK, Louis P, Carli PM, Wolf JE et al: Plasma iron status and lipid peroxidation following thrombolytic therapy for acute myocardial infarction. Fundamental & clinical pharmacology 1998, 12(2):236-241.
36. Zhao G, Ayene IS, Fisher AB: Role of iron in ischemia-reperfusion oxidative injury of rat lungs. American journal of respiratory cell and molecular biology 1997, 16(3):293-299.
37. Cadenas S: ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free radical biology & medicine 2018, 117:76-89.
38. Yuan H, Pratte J, Giardina C: Ferroptosis and its potential as a therapeutic target. Biochemical pharmacology 2021, 186:114486.
39. Konopelski P, Ufnal M: Electrocardiography in rats: a comparison to human. Physiological research 2016, 65(5):717-725.
40. Gavrieli Y, Sherman Y, Ben-Sasson SA: Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of cell biology 1992, 119(3):493-501.
41. Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N: Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. Journal of hepatology 2007, 47(2):253-261.
42. Laukkanen T, Kunutsor SK, Khan H, Willeit P, Zaccardi F, Laukkanen JA: Sauna bathing is associated with reduced cardiovascular mortality and improves risk prediction in men and women: a prospective cohort study. BMC medicine 2018, 16(1):219.
43. Källström M, Soveri I, Oldgren J, Laukkanen J, Ichiki T, Tei C, Timmerman M, Berglund L, Hägglund H: Effects of sauna bath on heart failure: A systematic review and meta-analysis. Clinical cardiology 2018, 41(11):1491-1501.
44. Han TH, Qamirani E, Nelson AG, Hyduke DR, Chaudhuri G, Kuo L, Liao JC: Regulation of nitric oxide consumption by hypoxic red blood cells. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(21):12504-12509.
45. Cubedo J, Suades R, Padro T, Martin-Yuste V, Sabate-Tenas M, Cinca J, Sans-Rosello J, Sionis A, Badimon L: Erythrocyte-heme proteins and STEMI: implications in prognosis. Thrombosis and haemostasis 2017, 117(10):1970-1980.
46. Hishiya A, Kitazawa T, Takayama S: BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress. Circ Res 2010, 107(10):1220-1231.
47. Knezevic T, Myers VD, Gordon J, Tilley DG, Sharp TE, 3rd, Wang J, Khalili K, Cheung JY, Feldman AM: BAG3: a new player in the heart failure paradigm. Heart failure reviews 2015, 20(4):423-434.
48. Cheung JY, Gordon J, Wang J, Song J, Zhang XQ, Prado FJ, Shanmughapriya S, Rajan S, Tomar D, Tahrir FG et al: Mitochondrial dysfunction in human immunodeficiency virus-1 transgenic mouse cardiac myocytes. Journal of cellular physiology 2019, 234(4):4432-4444.
49. Su F, Myers VD, Knezevic T, Wang J, Gao E, Madesh M, Tahrir FG, Gupta MK, Gordon J, Rabinowitz J et al: Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI insight 2016, 1(19):e90931.
50. Wang X, Wang Q, Guo W, Zhu YZ: Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Bioscience reports 2011, 31(2):87-98.
51. Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK: Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2005, 5(6):1194-1203.
52. Tahrir FG, Knezevic T, Gupta MK, Gordon J, Cheung JY, Feldman AM, Khalili K: Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes. Journal of cellular physiology 2017, 232(4):797-805.
53. Ma H, Gong H, Chen Z, Liang Y, Yuan J, Zhang G, Wu J, Ye Y, Yang C, Nakai A et al: Association of Stat3 with HSF1 plays a critical role in G-CSF-induced cardio-protection against ischemia/reperfusion injury. J Mol Cell Cardiol 2012, 52(6):1282-1290.
54. Katsaros KM, Speidl WS, Demyanets S, Kastl SP, Krychtiuk KA, Wonnerth A, Zorn G, Tentzeris I, Farhan S, Maurer G et al: G-CSF Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease. PLoS One 2015, 10(11):e0142532.
55. Sugano Y, Anzai T, Yoshikawa T, Maekawa Y, Kohno T, Mahara K, Naito K, Ogawa S: Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovascular research 2005, 65(2):446-456.
56. Baldo MP, Davel AP, Damas-Souza DM, Nicoletti-Carvalho JE, Bordin S, Carvalho HF, Rodrigues SL, Rossoni LV, Mill JG: The antiapoptotic effect of granulocyte colony-stimulating factor reduces infarct size and prevents heart failure development in rats. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2011, 28(1):33-40.
57. Maekawa Y, Anzai T, Yoshikawa T, Sugano Y, Mahara K, Kohno T, Takahashi T, Ogawa S: Effect of granulocyte-macrophage colony-stimulating factor inducer on left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 2004, 44(7):1510-1520.
58. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL: Reperfusion injury induces apoptosis in rabbit cardiomyocytes. The Journal of clinical investigation 1994, 94(4):1621-1628.
59. Fliss H, Gattinger D: Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996, 79(5):949-956.
60. Elsässer A, Suzuki K, Lorenz-Meyer S, Bode C, Schaper J: The role of apoptosis in myocardial ischemia: a critical appraisal. Basic research in cardiology 2001, 96(3):219-226.
61. Cory S, Huang DC, Adams JM: The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003, 22(53):8590-8607.
62. Sun C, Zhang X, Yu F, Liu C, Hu F, Liu L, Chen J, Wang J: Atractylenolide I alleviates ischemia/reperfusion injury by preserving mitochondrial function and inhibiting caspase-3 activity. The Journal of international medical research 2021, 49(2):300060521993315.
63. Liu H, Li S, Jiang W, Li Y: MiR-484 Protects Rat Myocardial Cells from Ischemia-Reperfusion Injury by Inhibiting Caspase-3 and Caspase-9 during Apoptosis. Korean circulation journal 2020, 50(3):250-263.
64. Maulik N, Sasaki H, Addya S, Das DK: Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS letters 2000, 485(1):7-12.
65. Nakamura M, Wang NP, Zhao ZQ, Wilcox JN, Thourani V, Guyton RA, Vinten-Johansen J: Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovascular research 2000, 45(3):661-670.
66. Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R: Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel, Switzerland) 2021, 10(5).
67. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A et al: An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. The Journal of clinical investigation 2011, 121(3):985-997.
68. Barrera G, Pizzimenti S, Dianzani MU: Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Molecular aspects of medicine 2008, 29(1-2):1-8.
69. Altamura S, Vegi NM, Hoppe PS, Schroeder T, Aichler M, Walch A, Okreglicka K, Hültner L, Schneider M, Ladinig C et al: Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica 2020, 105(4):937-950.
70. Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P et al: Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell death discovery 2021, 7(1):193.
71. Tang LJ, Luo XJ, Tu H, Chen H, Xiong XM, Li NS, Peng J: Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn-Schmiedeberg's archives of pharmacology 2021, 394(2):401-410.
72. Park JW, Chun YS, Kim YH, Kim CH, Kim MS: Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci 1997, 60(24):2207-2219.
73. Zhang X, Xiao Z, Yao J, Zhao G, Fa X, Niu J: Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Molecular and cellular biochemistry 2013, 372(1-2):169-179.
74. Kidane TZ, Sauble E, Linder MC: Release of iron from ferritin requires lysosomal activity. American journal of physiology Cell physiology 2006, 291(3):C445-455.
75. Zhang Y, Mikhael M, Xu D, Li Y, Soe-Lin S, Ning B, Li W, Nie G, Zhao Y, Ponka P: Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxidants & redox signaling 2010, 13(7):999-1009.
76. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014, 509(7498):105-109.
77. Santana-Codina N, Mancias JD: The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel, Switzerland) 2018, 11(4).
78. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, 3rd, Kang R, Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016, 12(8):1425-1428.
79. Liang S, Ping Z, Ge J: Coenzyme Q10 Regulates Antioxidative Stress and Autophagy in Acute Myocardial Ischemia-Reperfusion Injury. Oxidative medicine and cellular longevity 2017, 2017:9863181.
80. Fan Z, Cai L, Wang S, Wang J, Chen B: Baicalin Prevents Myocardial Ischemia/Reperfusion Injury Through Inhibiting ACSL4 Mediated Ferroptosis. Frontiers in pharmacology 2021, 12:628988.
81. Hayes JD, Dinkova-Kostova AT: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in biochemical sciences 2014, 39(4):199-218.
82. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017, 6(8):e371.
83. Dodson M, Castro-Portuguez R, Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox biology 2019, 23:101107.
84. Shin D, Kim EH, Lee J, Roh JL: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free radical biology & medicine 2018, 129:454-462.
85. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology (Baltimore, Md) 2016, 63(1):173-184.
86. Liu X, Yuan X, Liang G, Zhang S, Zhang G, Qin Y, Zhu Q, Xiao Q, Hou N, Luo JD: BRG1 protects the heart from acute myocardial infarction by reducing oxidative damage through the activation of the NRF2/HO1 signaling pathway. Free radical biology & medicine 2020, 160:820-836.
87. Chillappagari S, Venkatesan S, Garapati V, Mahavadi P, Munder A, Seubert A, Sarode G, Guenther A, Schmeck BT, Tümmler B et al: Impaired TLR4 and HIF expression in cystic fibrosis bronchial epithelial cells downregulates hemeoxygenase-1 and alters iron homeostasis in vitro. American journal of physiology Lung cellular and molecular physiology 2014, 307(10):L791-799.
88. Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Kempuraj D, Dubova I, Saeed D, Zahoor H, Premkumar K, Zaheer S et al: CRISPR/Cas9 Editing of Glia Maturation Factor Regulates Mitochondrial Dynamics by Attenuation of the NRF2/HO-1 Dependent Ferritin Activation in Glial Cells. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 2019, 14(4):537-550.
89. Qiu YB, Wan BB, Liu G, Wu YX, Chen D, Lu MD, Chen JL, Yu RQ, Chen DZ, Pang QF: Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respiratory research 2020, 21(1):232.
90. Zhao Y, Lu J, Mao A, Zhang R, Guan S: Autophagy Inhibition Plays a Protective Role in Ferroptosis Induced by Alcohol via the p62-Keap1-Nrf2 Pathway. Journal of agricultural and food chemistry 2021, 69(33):9671-9683.
91. Yang T, Sun Y, Mao L, Zhang M, Li Q, Zhang L, Shi Y, Leak RK, Chen J, Zhang F: Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox biology 2018, 17:323-337.
92. Shen Y, Liu X, Shi J, Wu X: Involvement of Nrf2 in myocardial ischemia and reperfusion injury. International journal of biological macromolecules 2019, 125:496-502.
93. Xu B, Zhang J, Strom J, Lee S, Chen QM: Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochimica et biophysica acta 2014, 1842(9):1638-1647.
94. Tuuminen R, Dashkevich A, Keränen MA, Raissadati A, Krebs R, Jokinen JJ, Arnaudova R, Rouvinen E, Ylä-Herttuala S, Nykänen AI et al: Platelet-derived Growth Factor-B Protects Rat Cardiac Allografts From Ischemia-reperfusion Injury. Transplantation 2016, 100(2):303-313.
95. Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, Wrzosek A, Mohr E, Logan A, Murphy MP et al: cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation 2017, 136(24):2337-2355.
96. Sharma HS, Das DK: Role of cytokines in myocardial ischemia and reperfusion. Mediators of inflammation 1997, 6(3):175-183.
97. Pluijmert NJ, Atsma DE, Quax PHA: Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Frontiers in cardiovascular medicine 2021, 8:647785.
98. Romagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S: CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends in immunology 2004, 25(4):201-209.
99. Clarke C, Kuboki S, Sakai N, Kasten KR, Tevar AD, Schuster R, Blanchard J, Caldwell CC, Edwards MJ, Lentsch AB: CXC chemokine receptor-1 is expressed by hepatocytes and regulates liver recovery after hepatic ischemia/reperfusion injury. Hepatology (Baltimore, Md) 2011, 53(1):261-271.
100. Stroo I, Stokman G, Teske GJ, Raven A, Butter LM, Florquin S, Leemans JC: Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. International immunology 2010, 22(6):433-442.
101. Cheng JZ, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC: Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. The Journal of biological chemistry 2001, 276(44):41213-41223.
102. Nakamura T, Naguro I, Ichijo H: Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et biophysica acta General subjects 2019, 1863(9):1398-1409.
103. Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M et al: Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. The Journal of clinical investigation 2019, 129(6):2293-2304.
104. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X et al: Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America 2019, 116(7):2672-2680.