簡易檢索 / 詳目顯示

研究生: 杜晨廷
Tu, Chen-Ting
論文名稱: 超快雷射多尺度複合結構實現氣體檢測應用之研究
Gas Detection Application by Ultrafast Laser Technique with Multiscale Composite Structures
指導教授: 張天立
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 超快雷射導電奈米線多尺度複合結構電極結構水熱法氣體感測
英文關鍵詞: Ultrafast laser, Conductive nanowires, Multiscale composite structures, Electrode structures, Hydrothermal method, Gas detection
DOI URL: http://doi.org/10.6345/NTNU201901066
論文種類: 學術論文
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用超快雷射(Ultrafast laser)之超短脈衝(Ultrashort pulses)的特性,進行多尺度複合結構(Multiscale composite structures)元件製作,進而應用於氣體檢測(Gas detection)。由於該雷射製程具較小熱影響區(Heat-affected zone),以能精確進行尺寸的製作。本研究超快雷射製程是在導電石墨烯(Graphene)薄膜基材上,進行圖案化電極(Electrode)結構元件,其結構包括指叉狀元件(Interdigitated electrodes, IDEs)和微溝槽(Microgrooves)。另一方面,為結合導電奈米線於微結構元件,本研究透過水熱法(Hydrothermal)生長氧化鋅(ZnO)奈米線於指叉狀元件上,且在微溝槽生長氧化鋅奈米線,並調控浸泡種晶層溶液時間生長氧化鋅奈米線,將元件電阻從106 下降至約550 。本研究發現在生長溶液中添加甲醇(Methanol)為界面活性劑,將有助於於微結構底部生長氧化鋅奈米線。最後,本研究會於兩種氣體感測元件結構設計,進行不同氣體濃度一氧化氮(Nitric oxide, NO)之檢測探討。本研究結果顯示以指叉狀元件結構氣體感測元件,偵測氣體濃度於50 ppm時,氣體響應值(Response)為6%;氣體濃度於150 ppm時,氣體響應值可為18%;氣體濃度於300 ppm時,氣體響應值可為31%。以微溝槽作為氣體感測元件時,偵測氣體濃度於50 ppm時,氣體響應值為11%;氣體濃度於150 ppm時,氣體響應值為22%;氣體濃度於300 ppm時,氣體響應值為40%。

    In this study, the ultrashort pulse laser with characteristics of ultrashort pulses were used to fabricate multiscale composite structures and then can be applied to gas detection. Due to the process with the small heat-affected zone, it can be precisely ablated the structure size. The ultrafast laser process of this study was to perform patterned electrode device on the conductive graphene substrate, in which the structures include interdigitated electrodes (IDEs) and micro grooves. The gas sensor device was fabricated with growth of ZnO nanowires by hydrothermal method on IDEs. The resistances of ZnO nanowires growth in microgrooves have changed at with different immersing time in seed layer solution. The resistance decreased from 106  to 550 . After adding methanol as a surfactant solution in the growth solution, the ZnO nanowires can be grown at the bottom of the microgroove structures. Finally, two gas sensing devices with the different sensing structures were designed to detect Nitric oxide (NO) at different concentrations. The results demonstrated that the gas sensing response were 6% and 18% when the concentration of NO were 50 ppm and 150 ppm with gas sensing device of IDEs structure. When the concentration of NO was 300 ppm, the gas sensing response can be increased to 31%. The gas sensing response were 11% and 22% when the concentration of NO were 50 ppm and 150 ppm with the gas sensing devices of microgroove structures. The gas sensing response was 40% when the concentration of NO was 300 ppm.

    摘要 i Abstract ii 致謝 iii 圖目錄 vi 表目錄 xi 第一章 緒論 1 1.1 研究背景與目的 1 1-2 氣體檢測 2 1.3 雷射製程簡介 3 1.4 奈米材料介紹 4 1.4.1 奈米線製程介紹 4 1-5 導電材料 5 第二章 文獻回顧 11 2.1 超快雷射加工簡介 11 2.2 超快雷射製程回顧 11 2.3 微型加熱元件回顧 12 2.4 導電奈米線回顧 13 2.4.1 水熱法製作金屬氧化物奈米線 14 2.4.2水熱法製作氧化鋅奈米線於微結構 14 2.5氣體偵測元件回顧 16 2.5.1 金屬氧化物於氣體偵測 16 2.5.2 複合式材料於氣體偵測 17 第三章 研究方法與設計 36 3.1 研究目的 36 3.2 導電薄膜製作 37 3.3 元件感測電極設計 37 3.4 雷射製程製造 38 3.4.1 雷射加工剝離閥值 38 3.4.2 雷射加工之重疊率與脈衝數 39 3.5 加熱元件設計 40 3.6 導電奈米線製作 41 3.6.1 水熱法 41 3.7 氣體感測晶片檢測分析 42 3.8 實驗量測與設備 43 第四章 結果與討論 54 4.1 石墨烯薄膜分析 54 4.1.1 製作石墨烯導電薄膜 54 4.1.2石墨烯薄膜表面分析及特性分析 55 4.2 超快雷射於導電薄膜圖案化之結果 55 4.2.1雷射加工剝離閥值 56 4.2.2電極設計與製作 58 4.3 電壓與溫度關係於加熱器探討 59 4.4 水熱法製作奈米線 59 4.4.1水熱法製作氧化鋅奈米線表面形貌 60 4.4.2 氧化鋅奈米線生長於指叉狀結構 60 4.4.3 氧化鋅奈米線生長於微型溝槽之結構 61 4.4.4 水熱法對生長溶液探討 62 4.5 電性與氣體反應檢測分析氣體 63 4.5.1 於氣體之電性與阻抗檢測分析 64 第五章 結論 90 5.1 結論 90 5.2 建議與未來展望 92 參考文獻 93

    [1] 勞工作業環境有害物質容許濃度標準http://www.stm.org.tw/omc/professional_zone/
    [2] Gas sensor market size, share & trends analysis by product, by technology, by end use (medical, environmental, petrochemical, automotive, industrial, agriculture, others), by region, and segment forecasts, Market Research Report (2019).
    [3] A.Dey, Semiconductor metal oxide gas sensors: A review, Materials Science & Engineering B, Vol. 229, pp. 206-217 (2018).
    [4] A. Kolmakov, Y.Zhang, G.Cheng, M.Moskovits, Detection of CO and O2 using tin oxide nanowire sensors, Mater, Vol.15, pp. 997-1000 (2003).
    [5] M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, S.H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor Applied Physics Letters, Vol. 93 263103 (2008).
    [6] P. Xu, Z. Cheng, Q. Pan, J. Xu, Q. Xiang, W. Yu, High aspect ratio In2O3 nanowires: synthesis, mechanism and NO2 gas-sensing properties, Sensors and Actuators B: Chemical , Vol.130 pp. 802-808 (2008).
    [7] N.D. Hoa, N.V. Quy, M.A. Tuan, N.V. Hieu, Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties, Phys. Vol. 42, pp. 146-149 (2009).
    [8] G. Neri, First fifty years of chemoresistive gas sensors, Chemosensors, Vol.3, pp. 1-20 (2015).
    [9] CNT gas sensors, Alpha Szenszor (2016).
    [10] T.T. Tung, M. Nine, M. Krebsz, T. Pasinszki, C.J. Coghlan, D. N. H. Tran, D. Losic, Recent advances in sensing applications of graphene assemblies and their composites, Graphene Assemblies, Vol. 27 1702891 (2017).
    [11] 謝孟玹,產業技術分析偵測PM2.5與空氣污染的關鍵之鑰-氣體感測器,經濟部技術處 (2015).
    [12] 馮晉嘉, 微小化生物感測器技術趨勢分析極發展政策建議, 工研院 IEK 生醫與生活組 (2002).
    [13] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice, Materials Science and Engineering: B, Vol. 139, pp. 1-23 (2007).
    [14] U. Yaqoob, A.S.M.I. Uddin, G.S. Chung, A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates, Sensors and Actuators B: Chemical, Vol. 224, pp. 738-746 (2016).
    [15] S.Kiiper, M.Stuke, Femtosecond UV excimer laser ablation, Applied Physics B, Vol.44, pp. 199-204 (1987).
    [16] C. Momma, B.N. Chichkov, S. Nolte, F.V. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen, Short-pulse laser ablation of solid targets, Optics Communications, Vol. 129, pp. 1343-142 ( 1996).
    [17] S. Dadashi, H. Delavari, R. Poursalehi, Optical properties and colloidal stability mechanism of bismuth nanoparticles prepared by Q-switched Nd:Yag laser ablation in liquid, Procedia Materials Science, Vol. 11 pp. 679-683 ( 2015 ).
    [18] K.H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt, Metal Ablation with Short and Ultrashort Laser Pulses , Physics Procedia, Vol. 12, pp. 230-238 (2011).
    [19] K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing review, Science & Applications, Vol. 14, pp. 1-12 (2014).
    [20] G. Dearden, Z. Kuang, D. Liu, W. Perrie, S.P. Edwardson, K.G. Watkins, Advances in ultra short pulse laser based parallel processing using a spatial light modulator, Physics Procedia, Vol. 39, pp. 650-660 ( 2012 ).
    [21] Y.B. Shen, T. Yamazaki, Z.F. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, M. Mori, Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires, Sensors and Actuators B: Chemical, Vol. 135, pp. 524-529 (2009).
    [22] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann. Rev. Mater, Vol. 34, pp. 151-180 (2004).
    [23] M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Hasee, Gas sensors based on one dimensional nanostructured metal-oxides: A Review, Sensors, Vol. 12(6), pp. 7207-7258 (2012).
    [24] K.W. Kolasinski, Catalytic growth of nanowires: Vapor–liquid–solid, vapor-solid-solid, solution–liquid–solid and solid–liquid–solid growth, Current Opinion in Solid State and Materials Science, Vol. 10, pp. 182-191 ( 2006).
    [25] C. S. Sharma, A. Sharma, M. Madou, Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers, Langmuir, Vol. 26, pp. 2218-2222 (2010).
    [26] B. Zhang, F. Kang, J.M. Tarascon, J.K. Kim, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Progress in Materials Science, Vol. 76, pp.319-380 (2016).
    [27] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays, Angewandte Chemie, Vol. 42, pp. 3031-3034 (2003).
    [28] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors, Vol. 218, pp. 160-183 (2015).
    [29] Graphene composites: introduction and market status, Graphene-Info: the graphene experts (2016), https://www.graphene-info.com/graphene-applications.
    [30] A. K. Sundramoorthy, T.H.V. Kumar, S. Gunasekaran, Graphene-based nanosensors and smart food packaging systems for food safety and quality monitoring, Graphene Nanosensors & Smart Food Packaging, Vol. 12, pp. 267-306 ( 2018 ).
    [31] D. Kim, I. W. Tcho, I. K. Jin, S. J. Park, S. B. Jeon, W. G. Kim, H. S. Cho, H.S. Lee, S.C. Jeoung, Y.K. Choi, Direct-laser-patterned friction layer for the output enhancement of a triboelectric nanogenerator, Nano Energy, Vol. 35, pp. 379-386 (2017).
    [32] K. Goya, Y. Yamachoshi, Y. Fuchiwaki, M. Tanaka, T. Ooie, K. Abe, M. Kataoka, Femtosecond laser direct fabrication of micro-grooved textures on a capillary flow immunoassay microchip for spatially-selected antibody immobilization, Sensors and Actuators B: Chemical, Vol. 239, pp. 1275-1281 (2017).
    [33] K. Lee, H. Ki, Fabrication and optimization of transparent conductive films using laser annealing and picosecond laser patterning, Applied Surface Science, Vol. 420, pp. 886-895 (2017).
    [34] Y. Yu, P. C. Joshi, J. Wu, A. Hu, Laser-induced carbon-based smart flexible sensor array for multiflavors detection, Applied Materials & Interfaces, Vol. 10, pp. 34005-34012 (2018).
    [35] T. L. Chang, C. Y. Chou, C. P. Wang, T. C. Teng, H. C. Han, Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits, Microelectronic Engineering, Vol. 210, pp. 19-26 (2019).
    [36] G. Dubourg, M. Radovic, Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room-temperature ethanol sensor, Applied Materials & Interfaces, Vol. 11, pp. 6257-6266 (2019).
    [37] J. Shin, Investigation of the surface morphology in glass scribing with a UV picosecond laser, Optics and Laser Technology, Vol. 111, pp.307-314 (2019).
    [38] J. Wu, K. Tao, J. Miao, L. K. Norford, Improved selectivity and sensitivity of gas sensing using a 3D reduced graphene oxide hydrogel with an integrated , Applied Materials, Vol.7, pp. 27502-27510 (2015).
    [39] Y. H. Kim, S. J. Kim, Y. J. Kim, Y. S. Shim, S. Y. Kim, B. H. Hong, H. W. Jang, Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending, Nano, Vol. 9, pp. 10453-10460 (2015).
    [40] S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang, Z. Zhu, One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor, Sensors and Actuators B: Chemical, Vol. 207, pp. 83-89 (2015).
    [41] N. S. Harale, A. S. Kamble, N. L. Tarwal, I. S. Mulla, V. K. Rao, J. H. Kim, P.S. Patil, Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: Effect of anion generating agents, Ceramics International, Vol. 42, pp. 12807-12814 (2016).
    [42] C. S. Chou, Y. C. Wua, C. H. Lin, Oxygen sensor utilizing ultraviolet irradiation assisted ZnO nanorods under low operation temperature, Rsc Advances, Vol. 4, pp. 52903-52910 (2014).
    [43] M. R. Alenezi, S. J. Henley, S. R. P. Silva, On-chip fabrication of high performance nanostructured ZnO UV detectors, Nanosensors synthesis and processing, Vol. 5 8516 (2015).
    [44] M. Jiao, N.V. Chien, N.V. Duy, N. D. Hoa, N.V. Hieu, K. Hjort, H. Nguyen, On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor, Materials Letters, Vol. 169, pp. 231-235 (2016).
    [45] M. Mazaheri, H. Aashuri, A. Simchi, Three-dimensional hybrid graphene/nickel electrodes on zinc oxidenanorod arrays as non-enzymatic glucose biosensors, Sensors and Actuators B: Chemical, Vol. 251, pp. 462-471 (2017).
    [46] C. L. Hsu, L. F. Chang, T. J. Hsueh, Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature, Sensors and Actuators B: Chemical Sensors and Actuators, Vol. 249, pp. 265-277 (2017).
    [47] J. W. Kim, Y. Porte, K. Y. Ko, H. Kim, J. M. Myoung, Micropatternable double-faced ZnO nanoflowers for flexible gas sensor, Applied Materials, Vol. 9, pp. 32876-32886 (2017).
    [48] D. Meng, D. Liu, G. Wang, Y. Shen, X. San, J. Si, F. Meng, In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance, Applied Surface Science, Vol. 463, pp. 348-356 (2019).
    [49] Y. Lingmin, L. Chun, M. Shuai, L. Yuan, Q. Lijun, Y. Mingli, F. Xinhui , Optoelectronic gas sensor sensitized by hierarchically structured ZnO nanorods/Ag nanofibers via on-chip fabrication, Materials Letters, Vol. 242, pp.71-74 (2019).
    [50] J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics, Applied Materials and Interfaces, Vol. 10, pp. 23987-23996 (2018).
    [51] R. Kumar, R. Singh, D.P. Singh, E. Joanni, R. M. Yadav, S.A. Moshkalev, Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications, Coordination Chemistry Reviews, Vol. 342, pp. 34-79 (2017)
    [52] G. Pal, A. Dutta, K. Mitra, M.S. Grace, A. Amat, T. B. Romanczyk, X. J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes, Photochem Photobiol B, Vol.86, pp. 252-261 (2007).
    [53] W. Pacquentin, N. Caron, R. Oltra, Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance, Applied Surface Science, Vol. 288, pp. 34-39 (2014).
    [54] S. F. Tseng, W. T. Hsiao, K. C. Huang, D. Chiang, The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates, Applied Surface Science, Vol. 257, pp. 8813-8819 (2011).
    [55] T. L. Chang, Z. C. Chen, S. F. Tseng, Laser micromachining of screen-printed graphene for forming electrode structures, Applied Surface Science, Vol. 374, pp.305-311 (2016).
    [56] E. J. Cookson, D. E. Floyd, A. J. Shih, Design manufacture, and analysis of metalfoam electrical resistance heater, Mechanical Sciences, Vol. 48, pp. 1314-1322 (2006).
    [57] J. Qiu, X. Li, W. He, S. J. Park, H. K. Kim, Y. H. Hwang, J. H. Lee, Y. D. Kim, The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method, Nanotechnology, Vol. 20 155603 (2009).
    [58] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Physica B, Vol. 403, pp. 3713-3717 (2008).
    [59] S. Berciaud, S. Ryu, L. E. Brus, T. F. Heinz, Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers, Nano letters, Vol. 9, pp. 346-352 (2009).
    [60] A. Paliwal, M. Tomar, V. Gupta J. Biomed, Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix, Biomedical Optics, Vol. 21 (8) 087006 (2016).
    [61] B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, Journal of the American Chemical Society, Vol. 125, pp.4430-4431 (2003).
    [62] M. R. Alenezi, A. S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliatis, S. J. Henley, S. R. P. Silva, Role of the Exposed polar facets in the performance of thermally and uv activated zno nanostructured gas sensors, The Journal of Physical Chemistry C, Vol. 117, pp. 17850-17858 (2013).
    [63] A. A. fzal, N. Cioffi, L. Sabbatinia, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sensors and Actuators B: Chemical, Vol. 171-172, pp.25-42 (2012).

    無法下載圖示 本全文未授權公開
    QR CODE