簡易檢索 / 詳目顯示

研究生: 鄭維斌
Cheng, Wei-Pin
論文名稱: 結合領導者-跟隨者型編隊控制與適應率於移動機器人協同搬運之實現
Realizing Mobile Robot Cooperative Transportation by Combining Leader-Follower Type Formation Control with Adaptive Law
指導教授: 陳美勇
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 適應控制編隊控制移動機器人領導者-跟隨者型編隊控制協同搬運
英文關鍵詞: adaptive control, formation control, mobile robot, leader-follower type formation control, cooperative transportation
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.003.2018.E08
論文種類: 學術論文
相關次數: 點閱:164下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在於結合適應律於領導者-跟隨者型編隊控制並應用於移動機器人之協同搬運。在設計控制器時考慮到控制器的計算能力和通信能力,於是本研究選擇無須通訊能力的分散控制 (decentralized control) 法。由於分散控制法是由每個機器人本身的控制器來控制本身機器人,所以在領導者-跟隨者型編隊控制中,跟隨者並無法直接知道領導者的完整狀態。所以本研究加入適應律估測領導者的狀態。並且通過 Lyapunov 理論及 Barbalat引理設計跟隨者的控制器與證明系統穩定性,此控制器的目的在於維持兩機器人之間的的距離與相對方位角在其初始值,進而達到協同搬運。最後經由模擬及實驗驗證此控制器的性能。

    In this study, we realize mobile robot cooperative transportation by combining leader-follower type formation control and adaptive law. In the control system design, a decentralized control is adopted because huge computational power and communication capacity of controller are not required in this structure. “Leader-follower type formation method” is used for controlling the follower robot to follow the leader robot. Because we use the decentralized control, the follower robot has limited knowledge about the leader robot’s states. The unknown term containing the velocity information of the leader robot is estimated by using online adaptive tuning laws. We design a controller and prove the stability by Lyapunov theorem and Barbalat’s lemma. The purpose of this controller is to maintain the distance and the relative bearing angle between the leader robot and the follower robot at its initial value, and then achieve cooperative transportation. Effectiveness of the proposed method is verified by simulation and experiment.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 7 1.4 本研究之貢獻 8 1.5 論文架構 8 第二章 機器人學理論基礎 10 2.1輪型機器人之結構分析並推導運動模型 10 2.2 跟隨者機器人與領導者機器人之間的關係 14 第三章 控制器理論 20 3.1 Lyapunov穩定度理論 20 3.2 Barbalat引理 20 3.3適應性控制 21 第四章 控制器設計 23 4.1領導者-跟隨者型編隊控制結合適應控制律 23 4.2協同搬運控制流程 27 第五章 模擬與實驗結果 33 5.1實驗設備 33 5.1.1 四輪 6 軸機器手臂車相關參數 35 5.2模擬結果 36 5.2.1 直線路徑 37 5.2.2 圓路徑 38 5.2.3 八字型路徑(Eight-Shape Path) 40 5.3 實驗結果 43 5.3.1 直線路徑 43 5.3.2 圓路徑 44 5.3.3 八字型路徑(Eight-Shape Path) 46 第六章 結論與未來展望 48 參考文獻 49

    [1] X. Yang, K. Watanabe, K. Kiguchi, and K. Izumi,“Coordinated Transportation of a Single Object by a Group of Nonholonomic Mobile Robots,” International Symposium on Distributed Autonomous Robotic Systems, Fukuoka, Japan, pp. 175–184, June 2002.
    [2] X. Yang, K. Watanabe, K. Kiguchi, and K. Izumi, “Coordinated Transportation of a Single Object by Two Nonholonomic Mobile Robots,” International Symposium on Artificial Life and Robotics, Oita, Japan, pp. 48-54, January 2002.
    [3] Orqueda O.A.A., Zhang X.T., and Fierro R, “An Output Feedback Nonlinear Decentralized Controller for Unmanned Vehicle Coordination,” International Journal of Robust and Nonlinear Control, vol. 17, no. 12, pp. 1106–1128, August 2007.
    [4] Chen Y.Q., Wang Z, “Formation Control: A Review and a New Consideration,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., Canada, pp. 3181–3186, August 2005.
    [5] Balch T., Arkin R.C, “Behavior-Based Formation Control for Multirobot Team,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926–939, December 1998.
    [6] Do K.D., Pan J, “Nonlinear Formation Control of Unicycle-Type Mobile Robots,” Robotics and Autonomous Systems, vol. 55, no. 3, pp. 191–204, March 2007.
    [7] Z. Yao, Y. Song, and W. Cai, “Neuro-Adaptive Virtual Leader Based Formation Control of Multi-Unmanned Ground Vehicles,” International Conference on Control Automation Robotics and Vision (ICARCV), Singapore, Singapore, pp. 615–620, December 2010.
    [8] Shao J., Xie G., and Wang L, “Leader-Following Formation Control of Multiple Mobile Vehicles,” IET Control Theory and Applications, vol. 1, no. 2, pp. 545–552, March 2007.
    [9] Li X., Xiao J., and Tan J, “Modeling and Controller Design for Multiple Mobile Robots Formation Control,” IEEE International Conference on Robotics and Biomimetics, Shenyang, China, pp. 838–843, August 2004.
    [10] Desai J.P., Ostrowski J., and Kumar V, “Controlling Formations of Multiple Mobile Robots,” IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 2864–2869, May 1998.
    [11] Li X., Xiao J, “Robot Formation Control in Leader–Follower Motion Using Direct Lyapunov Method,” International Journal of Intelligent Control and Systems, vol. 10, no. 3, pp. 244–250 , September 2005.
    [12] Dierks T., Jagannathan S, “Control of Nonholonomic Mobile Robot Formations: Backstepping Kinematics into Dynamics,” IEEE International Cotiference on Control Applications, Singapore, Singapore, pp. 94–99, October 2007.
    [13] Consolini L., Morbidi F., Prattichizzo D., and Tosques M, “Leader-Follower Formation Control of Non-Holonomic Mobile Robots with Input Constraints,” Automatica, vol. 44, no. 5, pp. 1343–1349, 2008.
    [14] C. B. Low, “A Flexible Leader-Follower Formation Tracking Control Design for Nonholonomic Tracked Mobile Robots with Low-Level Velocities Control Systems,” IEEE International Conference on Intelligent Transportation Systems, Las Palmas, Spain, pp. 2424–2431, September. 2015.
    [15] György Max, Béla Lantos, “Adaptive Formation Control of Autonomous Ground Vehicles in Leader-Follower Structure,” International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, pp.13–18, November, 2016.

    下載圖示
    QR CODE