簡易檢索 / 詳目顯示

研究生: 周鈺偵
Chou, Yu-Jen
論文名稱: Permutations with 0 or 1 fixed point in hyperoctahedral groups
Permutations with 0 or 1 fixed point in hyperoctahedral groups
指導教授: 林延輯
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 23
中文關鍵詞: derangementshyperoctahedral groupsalternating permutationscolored permutations
DOI URL: http://doi.org/10.6345/NTNU201900172
論文種類: 學術論文
相關次數: 點閱:316下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, we extend the work of fixed points on the permutations of [n] in two directions: firstly, we discuss the fixed points problems of hyperoctahedral groups Bn; secondly, elements in Bn can be thought the letters
    are painted by two colors, it can be generalized with r colors. Moreover, we discuss the fixed point problems in the subsets alternating permutations of Bn and strictly decreasing permutations with r colors. After removing all fixed points and standardizing the remaining letters, we focus on colored permutations with 0 or 1 fixed point. We obtain combinatorial correspondence between derangements and elements with exactly one fixed point together with their recursions and generating functions.

    1 Introduction 1 2 Derangements in hyperoctahedral groups 5 3 Alternating permutations with maximal number of fixed points in hyperoctahedral groups 14 4 Strictly decreasing permutations 16 5 Conclusion and Discussion 20 6 Acknowledgement 22 References

    [Arn92] Vladimir I. Arnol’d, The calculus of snakes and the combinatorics of
    Bernoulli, Euler and Springer numbers of Coxeter groups, Russian Mathematical Surveys 47 (1992), no. 1, 1.
    [Bag04] Eli Bagno, Euler-Mahonian parameters on colored permutation groups,
    S´eminaire Lotharingien de Combinatoire 51 (2004), B51f.
    [BG06] Eli Bagno and David Garber, On the excedance number of colored permutation groups, S´em. Lothar. Combin 53 (2006), B53f.
    [BO17] Arthur T. Benjamin and Joel Ornstein, A bijective proof of a derangement
    recurrence, FIBONACCI QUARTERLY 55 (2017), no. 5, 28–29.
    [DW93] Jacques D´esarm´enien and Michelle L. Wachs, Descent classes of permutations with a given number of fixed points, Journal of Combinatorial Theory,
    Series A 64 (1993), no. 2, 311–328.
    [FH05] Dominique Foata and Guo-Niu Han, Signed words and permutations II;
    the Euler-Mahonian polynomials, the electronic journal of combinatorics
    11 (2005), no. 2, 22.
    [FH08] , Signed words and permutations, IV: Fixed and pixed points, Israel
    Journal of Mathematics 163 (2008), no. 1, 217–240.
    [HX09] Guo-Niu Han and Guoce Xin, Permutations with extremal number of fixed
    points, Journal of Combinatorial Theory, Series A 116 (2009), no. 2, 449–
    459.
    [KPP94] Alexander G. Kuznetsov, Igor M. Pak, and Alexandr E. Postnikov, Increasing trees and alternating permutations, Russian Mathematical Surveys 49 (1994), no. 6, 79.
    [Rei93] Victor Reiner, Signed permutation statistics, European journal of combinatorics 14 (1993), no. 6, 553–567.
    [Rem83] Jeffrey B. Remmel, A note on a recursion for the number of derangements,
    European Journal of Combinatorics 4 (1983), no. 4, 371–374.
    [Tuc80] Alan Tucker, Applied combinatorics, Wiley, 1980.
    [WG16] Walter D. Wallis and John C. George, Introduction to combinatorics,
    Chapman and Hall/CRC, 2016.
    [Wil84] Herbert S. Wilf, A bijection in the theory of derangements, Mathematics
    Magazine 57 (1984), no. 1, 37–40.

    下載圖示
    QR CODE