簡易檢索 / 詳目顯示

研究生: 王晨育
Wang, Chen-Yu
論文名稱: 矽於鎢表面上的擴散與成長
Diffusion and growth of Si on W surfaces
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 78
中文關鍵詞: 場離子顯微鏡
英文關鍵詞: Field ion microscope, Silicon, Germanium, Tungsten
論文種類: 學術論文
相關次數: 點閱:187下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用場離子顯微鏡研究矽原子吸附在鎢表面上的擴散行為與排列方式。藉由擴散運動實驗,我們得到單顆矽原子在鎢(110)和鎢(211)上的擴散活化能分別為0.66±0.04(eV)和0.48±0.01(eV)。在排列方面的觀察發現:鎢(110)上的矽原子在高覆蓋率時長成(2√2/√3×4/√3)R35.26結構;鎢(211)上的矽原子排成有間隔的直鏈狀結構;鎢(111)上的矽原子排成三角或直鏈型結構;鎢(411)上的矽原子排成(1×1)結構。
    另外,我們為了蒸鍍鍺而嘗試了幾種方法,其中發現使用鎢舟是比較簡單有效的方法。

    The study is about diffusion dynamics and growth structure of Si adatoms on W surfaces by field ion microscope. The diffusion activation energy of Si adatom on W(110) and W(211) surfaces are 0.66±0.04(eV) and 0.48±0.01(eV) respectively. In growth structure study: on W(110) facet we can observe the Si adatoms be arranged in ((2√2)/√3×4/√3)R35.26 structure; Si adatoms can be grown straight arrangement on W(211); Si adatoms can be grown triangular and straight arrangement on W(111); Si adatoms can be grown (1×1) structure on W(411).
    In addition, we try several methods to deposition germanium. As a result, we found that using W boat is better than the other methods.

    致謝 1 摘要 2 Abstract 3 第一章 緒論 4 1-1研究動機 4 1-2吸附原子的動態 5 1-3場離子顯微鏡的優勢 5 1-4材料的選擇 6 第二章 實驗原理 7 2-1場離子顯微鏡的成像原理 7 2-2場離子化之原理與作用 9 2-3場離子影像辨別法 14 2-4針尖表面的皺化機制 16 第三章 實驗儀器與實驗準備 17 3-1儀器構造 17 3-2實驗準備 27 3-3實驗流程 34 第四章 數據分析 36 4-1基底的模擬與吸附原子站位的分析 36 4-2吸附原子的擴散機制 38 4-3原子特殊站位的擴散活化能 39 第五章 實驗結果與討論 41 5-1矽原子在鎢(110)上的擴散與排列 41 5-2矽原子在鎢其他切面上的擴散與排列 53 5-3鍺鍍源的設計研究 69 第六章 結論 75 6-1單顆矽原子在鎢基底上的擴散 75 6-2多顆矽原子在鎢基底上的排列 75 6-3鍺鍍源的設計研究 76 參考文獻 77

    [1] P. R. Wallace, “The Band Theory of Graphite”, Phys. Rev. 71, 622. (1947)
    [2] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., “The electronic properties of grapheme”, Rev. Mod. Phys. 81, 109-162. (2009)
    [3] Pumera, M., “Electrochemistry of graphene:new horizons for sensing andenergy storage”, Chemical Record 9, 211. (2009)
    [4] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, Byung Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparentelectrodes”, Nature 457, 706. (2009)
    [5] K. Takeda, K. Shiraishi, “Theoretical possibility of stage corrugation in Si and Ge analogs of graphite”, Phys. Rev. B 50, 14916. (1994)
    [6] Zhang M, Kan Y.H., Zang Q.J., Su Z.M., Wang R.S., “Why silicon nanotubes stably exist in armchair structure?”, Chem. Phys. Lett. 379, 81. (2003)
    [7] S. Cahangirov, M. Topsakal, E. Aktu¨rk, H. S¸ ahin, S. Ciraci, “Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium”, Phys. Rev. Lett. 102, 236804. (2009)
    [8] K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
    I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666. (2004)
    [9] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B, “Epitaxial growth of a silicene sheet”, Appl. Phys. Lett. 97, 223109. (2010)
    [10] Baojie Feng, Zijing Ding, Sheng Meng, Yugui Yao, Xiaoyue He, Peng Cheng, Lan Chen, Kehui Wu, “Evidence of silicene in honeycomb structures of silicon on Ag(111)”, Nano Lett. 12, 7, 3507. (2012)
    [11] Davila, M.E; Xian, L; Cahangirov, S; Rubio, A; Le Lay, G,”Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene”, NEW JOURNAL OF PHYSICS. 16, 095002. (2014)
    [12] Ni, Z. et al. “Tunable bandgap in silicene and germanene”. Nano Lett. 12, 113–118. (2011)
    [13] Lin, C-L. et al. Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801. (2013)
    [14] De Padova, P. et al. “1D graphene-like silicon systems: silicene nano-ribbons. J. Phys. Condens”. Matter 24, 223001. (2012)
    [15] Ezawa, M. “Valley-polarized metals and quantum anomalous Hall effect in silicene". Phys. Rev. Lett. 109, 055502. (2012)
    [16] C.-C. Liu, W. Feng, Y. Yao, “Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium”, Phys. Rev. Lett. 107, 076802. (2011)
    [17] Xu, C. et al. Giant magnetoresistance in silicene nanoribbons. Nanoscale 4, 3111-3117. (2012)
    [18] 陳晏清,“鋪覆超薄膜於針狀金屬表面之現象研究”, 國立台灣師範大學碩士論文 (2013)
    [19] A. P. Janssen and J. P. Jones,” A Study of the growth of germanium, and silicon, on tungsten, by field emission and field-ion microscopy”, SURFACE SCIENCE 41, 257-276. (1974)
    [20] T. T. Tsong and Rodrigo Casanova,”Correlation between Adatom-Adatom Pair Interaction and Adlayer Superstructure Formation: Si on W (110)”, Phys. Rev. Lett. 47, 113. (1981).
    [21] O. Nishikawa, Y. Tsunashima, E. Nomura, M. Wada, S. Horie, M. Shibata, T. Yoshimura and R. Uemori:,”Atom‐probe study of the early stage of silicide formation. I. W–Si system”, Journal of Vacuum Science & Technology B 1, 6. (1983)
    [22] Linfei Li , Shuang-zan Lu , Jinbo Pan , Zhihui Qin , Yu-qi Wang , Yeliang Wang , Geng-yu Cao , Shixuan Du , and Hong-Jun Gao,” Buckled Germanene Formation on Pt(111)”, Adv. Mater. 26, 4820-4824. (2014)
    [23] E. W. Müller, Z. Physik 106, 541 (1937)
    [24] E. W. Müller, Z. Physik 136, 131 (1951)
    [25] E. W. Müller, T. T. Tsong, “Field Ion Microscopy Principles and Applications”, American Elsevier Publishing Company (1969)
    [26] A. Lukaszewski, A. Szczepkowicz, “Computer simulation of FIM images – the convex hull model”, Vacuum 54, 67 (1999)
    [27] Andrzej Szczepkowicz, Antoni Ciszewski, Robert Bryl, Czesław Oleksy, Cheng-Hsun Nien, Qifei Wu, Theodore E. Madey, “A comparison of adsorbate-induced faceting on flatand curved crystal surfaces”, Surf. Sci. 599, 55-68 (2005)
    [28] 真空技術與應用,行政院國家科學委員會精密儀器發展中心 (2001)
    [29] 高玉娟,“鉑或銥原子團在鉑表面之擴散研究”,國立台灣師範大學碩士論文(2007)
    [30] 翁文記,“鎢表面上單原子與原子團動態之研究”,國立台灣師範大學碩士論文(2006)
    [31] Dimoulas, A, “Silicene and germanene: Silicon and germanium in the "flatland"”, Microelectronic Engineering. 131, 68-78. (2015)
    [32] Kimio OKUNO and Junya HORIO,”Tungsten Silicide and Germanide Growth and Metal Interface”, Japanese Journal of Applied Physics. 43, 4316-4321. (2004).

    下載圖示
    QR CODE