簡易檢索 / 詳目顯示

研究生: 林重燁
Lin, Chung-Yeh
論文名稱: 全新世早期微孔珊瑚骨骼穩定碳氧同位素組成與Sr/Ca比值反映之臺灣西南部古環境
Early Holocene Paleoenvironment of SW Taiwan Inferred from Oxygen-Carbon Stable Isotopes and Sr/Ca ratios of Coral Porites Skeleton
指導教授: 米泓生
Mii, Horng-Sheng
王士偉
Wang, Shih-Wei
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 微孔珊瑚穩定碳氧同位素古環境鍶/鈣比值全新世早期
英文關鍵詞: Coral Porites, stable carbon and oxygen isotopes, Sr/Ca ratio, paleoenvironment, Early Holocene
DOI URL: http://doi.org/10.6345/NTNU201900881
論文種類: 學術論文
相關次數: 點閱:132下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析採自臺灣西南部阿公店珊瑚礁岩芯(長約2.4公尺;U-Th定年8986±28~7870±29 yr BP)中微孔珊瑚(Porites;成分為霰石)生長較為連續之部分,進行穩定碳氧同位素以及Sr/Ca比值成分分析,以重建全新世早期臺灣西南部地區之古環境。
    珊瑚標本以X射線照相以確定主要生長軸方向;之後沿生長軸以電鑽微取樣(間距1mm),進行穩定碳氧同位素以及Sr/Ca比值之分析。標本氧同位素數值範圍介於-3.36‰~-6.64‰ (V-PDB),平均值為-5.18‰±0.72‰(1;N=1634)。根據穩定氧同位素數值變化可觀察到106個震盪,其震幅約0.5~1‰。而Sr/Ca比值分析以每1cm為間距取樣,共分析169個標本,為追求數據的完整性,本研究額外挑選2點以每1mm為間距多做取樣(N=18),也以氧同位素震盪之峰值部分去做Sr/Ca比值分析(N=50)以了解季節之最高及最低溫度,其數值介於8.27mmol/mol~9.79mmol/mol之間,平均值為9.09mmol/mol±0.39mmol/mol(1;N=237),發現主要共可分為九個區段。而碳同位素數值範圍為0.79~-4.75‰,平均值為-1.40‰±0.82‰(1 ;N=1634),與氧同位素並無明顯的相關性。
    年代由老至年輕,若根據微孔珊瑚之Sr/Ca比值溫度轉換公式,其溫度的震盪可分為九個階段:第一段(8700 yr BP),平均溫為32.3℃(N=8);第二段(8640 yr BP),平均溫為22.3℃(N=22);第三段(8595 yr BP),平均溫25℃(N=30);第四段(8525 yr BP),平均溫為21.3(N=40);第五段(8400 yr BP),平均溫為24.4℃(N=19);第六段(8350 yr BP),平均溫為20.9℃(N=58);第七段(8220 yr BP),平均溫為30℃(N=20);第八段(8200 yr BP),平均溫21.4℃(N=17);第九段(8090 yr BP),平均溫為29.6℃(N=23)。將所得溫度代入 Shen(1996)之海溫與海水氧同位素轉換公式,便可推得該時期之海水氧同位素數值範圍介於-2.0~2.0‰,夏季與冬季平均值分別為-0.3(N=71)及0.4‰ (N=44),比現今臺灣西南部實測之冬、夏海水氧同位素數值大。而若假設當時海水氧同位素值為0.5‰,則整體海水氧同位素反映出全新世早期臺灣西南部沿海地區當時夏季季風較現今強,降水量較現今為多的現象。
    本研究之碳同位素與氧同位素數值並無明顯的相關性,但整體來看碳同位素數值自8700 yr BP至8090 yr BP有逐漸變大的趨勢,或許顯示出當時日照量逐漸變強,使珊瑚之光合作用更旺盛的現象。而整體珊瑚碳同位素的低值逐漸變大,振幅則逐漸變小,可能表示冬季日照量有增加的趨勢。

    For reconstructing paleoenvironment of southwestern Taiwan during Early Holocene, this study analyzed stable carbon and oxygen isotopes and Sr/Ca ratios of coral Porites reef core (2.4m long; U-Th dated 8986±28 to 7870±29 yr BP) collected in Agongdian area, southwestern Taiwan.
    After making sample clean and affirming that the sample was mainly composed of aragonite, X-Ray method was applied to determine the main growth direction of coral. Coral carbonate powder was micro-sampled along the main growth direction for stable isotope and Sr/Ca ratio analyses. For stable carbon and oxygen isotope analysis, the distance between adjacent sample points is one mm. 18O values of coral Porites range from -3.4‰ to -6.6‰ (V-PDB) with an average 18O value of -5.2±0.7‰ (1;N=1634). Based on the fluctuation of 18O values, One hundred and six oscillations with amplitudes between 0.5 and 1.0‰ were observed. For Sr/Ca ratio analysis, sample powder was picked every 1cm and a total of 169 sample points was collected. Extra 50-sample points between two peaks of 18O values are picked up to analyze Sr/Ca ratio with the purpose of finding out the maximum and minimum temperature. Sr/Ca ratios are between 8.3mmol/mol and 9.8mmol/mol and the mean Sr/Ca ratio is approximate 9.1±0.4mmol/mol (1;N=237). Nine stages of temperature can be divided bared on Sr/Ca records. 13C values of coral skeletons are from -4.9‰ to 0.8‰ and the average 13C value is about -1.4±0.8‰ (1;N=1634). There is no significant correlation between 13C and 18O values.
    In ascending order, temperature fluctuation can be divided into nine stages by temperature inferred from Sr/Ca ratio of coral Porites. The mean temperature in the first stage (8700 yr BP) was approximately 32.3℃ (N=8) and followed by the average temperature of 22.3℃ (N=22) in the second stage (8640 yr BP). It increased to 25℃ (N=30) in the third stage (8595 yr BP), then declined around 4℃ (N=40) in the fourth stage (8525 yr BP), and was followed by the increase to 24.4℃ (N=19) in the fifth stage (8400 yr BP). The mean temperature in the sixth stage (8350 yr BP) and seventh stage (8220 yr BP) was approximately 21℃ (N=58) and 30℃ (N=20), respectively. It decreased to 21℃ (N=17) in the eighth stage (8200 yr BP), then raised again to 30℃ (N=23) in the final stage (8090 yr BP). After that, calculated temperature is substituted into SST-18Oseawater transformation formula (Shen et al., 1996). The results show that calculated 18Oseawater values range from -2.0‰ to 2.0‰. The mean 18Oseawater values of summer and winter are -0.3‰ ( N=71) and 0.4‰ (N=44) respectively. In comparison with measured modern SW Taiwan 18Oseawater, the calculated 18O values of early Holocene seawater is greater than those of present. However, assuming that the mean 18Oseawater values was 0.5‰ in early Holocene, a strengthened summer monsoon and the high precipitation in Southwestern Taiwan during Early Holocene is inferred.
    In this study, there is no significant correlation between stable carbon and oxygen isotopes, and the consistency is quite different in different periods of time. However, in general, stable carbon isotope values increased gradually from 8700 to 8090 yr BP, indicating that sunlight was getting stronger and stronger during the time period studied. Moreover, the increasing of the lowest 13C values and the decreasing of amplitude between the lowest and highest 13C values during the period of time may indicate that the photosynthesis activities of symbiotic algae of coral was more and more stronger in corresponding to strengthening of sunlight in the winter.

    中文摘要 I 英文摘要 III 目錄 VI 圖目 VIII 表目 XII 第一章、緒論 1 1.1 前言 1 1.2 全新世早期之古環境研究 4 1.3 造礁珊瑚之同位素與微量元素分析 8 1.4 研究目的 13 第二章、研究地點、材料與研究方法 14 2.1 研究地點與材料 14 2.2 研究方法 17 第三章、結果與討論 20 3.1 X-Ray分析結果 20 3.2 拉曼光譜儀分析結果 20 3.3 U-Th定年分析結果 21 3.4 U-Th定年與珊瑚生長紋變化 23 3.5 氧同位素與Sr/Ca比值分析結果 25 3.6 珊瑚Sr/Ca比值估算出之海水溫度 27 3.7 海水氧同位素之估算 36 3.8 珊瑚骨骼氧同位素估算之海水溫度 46 3.9 臺灣西南地區8700~8090 yr BP之碳同位素變化 51 第四章、結論 53 參考文獻資料 54 附錄一、AGD-2岩芯分析區間之Porites珊瑚δ18O、δ13C、Sr/Ca、Sr/Ca換算之海溫、海水估算之氧同位素。 71 附錄二、AGD-2 岩芯 Porite s珊瑚之 U-Th 定年結果 114

    沈川洲 (1996) 高精度鍶鈣比值分析及其在環境上的應用。國立清華大學化學研究所博士論文,共157頁。
    余采倫 (2007) 珊瑚骨骼中鋇鈣比值的地球化學與環境意義。國立成功大學地球科學研究所碩士論文,共46頁。
    詹明達 (2009) 南海和熱帶西太平洋之全新世氣候變遷:多種有孔蟲穩定同位素證據(MD972146 & MD052928)。國立臺灣海洋大學應用地球科學研究所碩士論文,共45頁。
    鍾全雄、游鎮烽、樊同雲(2008)利用人工養殖珊瑚評估珊瑚骨骼化學組成作為古環境代用指標之應用。國立臺灣博物館學刊61–2期,第63-88頁。
    陳文山(2016)臺灣地質概論。臺北市:中華民國地質學會,共204頁。
    陳秉範 (1949)臺灣高雄臺南間匿伏構造之鑽探談。臺灣老油田之新看法,79-87頁。
    張世安、米泓生、李匡悌、李孟陽、王士偉(2019)台灣南部現生牡蠣殼體與水體之穩定同位素記錄。臺灣地球科學聯合學術研討會(2019),第120頁。
    林朝棨(1963)阿公店層和阿公店珊瑚礁的命名。國家長期發展科學委員會年報,第61頁。
    科技部海洋學門資料庫(Ocean Data Bank of the Ministry of Science and Technology, Republic of China )(1985~2019):http://www/odb.ntu.edu.tw
    Alibert, C., and MCculloch, M.T., 1997, Strontium/calcium ratios in modern Porites coral From the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO: Paleoceanography, v. 12, no. 3, p. 345–363.
    Bar-Matthews, M., Ayalon, A., Kaufman, A. and Wasserburg, G.J., 1999, The eastern Mediterranean paleoclimate as a reflection of regional events, Soreq Cave, Israel: Earth andPlanetary Science Letters, v. 166, p. 85–95.
    Barnes, R.D., 1987, Invertebrate Zoology; Fifth Edition. Fort Worth, TX: Harcourt Brace Jovanovich College Publishers., 893 P.
    Bard, E., 1988, Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications, Paleoceanography, v. 3, p. 635-645.
    Bard, E., Hamelin, B., Fairbanks, R.G., and Zindler A., 1990, Comparison between radiocarbon and uranium series ages on glacial age Barbados corals: Nature, v. 345, p. 405–409 .
    Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G., 1998, Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti: Radiocarbon, v.40, no.3, p. 1085–92.
    Barnes, R.S.K. and R.N. Hughes, 1999, An Introduction to Marine Ecology, third edition. Oxford, UK: Blackwell Science Ltd, p. 117-141.
    Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992, Sea-surface temperature from coral skeletal strontium/calcium ratios: Science, v. 257, p. 644–646.
    Beck, J.W., Recy, J., Taylor, F., Edwards, R.L.,and Cabioch, G., 1997, Abrupt changes in early Holocene tropical sea surface temperature derived from coral records: Nature, v. 385, p. 705–707.
    Berger, A., & Loutre, M. F. , 1991, Insolation values for the climate of the last 10 million years: Quaternary Science Reviews, v. 10, no. 4, p. 297–317.
    Blunier, T. , Chappellaz, J., Schwander, J., Stauffer, B. and Raynaud, D., 1995, Variations in atmospheric methane concentration during the Holocene epoch: Nature, v. 374, p. 46–49.
    Bond G, Kromer B, Beer J, 2001, Persistent solar influence on north atlantic climate change during Holocene: Science, v. 294 ,no. 13, p. 2130-2135.
    Broecker, W.S., and Peng, T.H., 1982, Tracers in the Sea, Lamont-Doherty Geological Observatory, Columbia University, New York.
    Broecker,W. S., 1994, Massive iceberg discharges as triggers for global climate change: Nature, v. 732, p. 663–666.
    Chen, W.-S., Sung, S.-H., Wu, C.-C., Hsu, H.-D., Yang, H.-C, 2005, Shoreline
    changes in the coastal plain of Taiwan since Last Glacial Epoch: Journal of Archaeology and Anthropology (National Taiwan University), v.26, p.40-55.
    Chen, F. H., D. Wu, J. Chen, A. Zhou, J. Yu, J. Shen, S. Wang, and X. Huang , 2016, Holocene moisture and east Asian summer monsoon evolution in the northeastern Tibetan plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies, Quaternary Science Reviews, v. 154, p. 111–129.
    Claussen, M., Kubatzki, C., Brovkin, V. and Ganopolski, A., 1999, Simulation of an abrupt change in Saharan vegetation in th mid-Holocene: Geophysical Research Letters, v. 0, no. 0, p. 1–4.
    COHMAP (Cooperative Holocene Mapping Project) Project Members ,1988 Climatic changes of the last 18000 years: Observations and Model Simulations: Science ,v. 24, p. 1043–1052.
    Cole, J.E., 2003, Holocene coral records:Windows on tropical climate variability: In Anson M.,Rick B.,John B.,Frank O.,Global change in the Holocene, London,UK:Hodder Education, p. 168–184.
    Cole, J.E. and Fairbanks, R.G., 1990, The Southern Oscillation recorded in the δ18O of coral from Tarawa Atoll: Paleoceanography, v. 5, p. 669–683.
    Correge, T., Delcroix, T., Recy, J., Beck, W., Cabioch, G., Le Cornec, F., 2000, Evidence for stronger El Nino-Southern Oscillation (ENSO) events in a mid-Holocene massive coral: Paleoceanography, v. 15, no. 4, p. 465–470.
    Corrège, T., 2006, Sea surface temperature and salinity reconstruction from coral geochemical tracers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, no. 2-4, p. 408–428.
    DeMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., 2000, Abrupt onset and termination of the Africa Humid Period: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, v.19, p. 347–361.
    DeMenocal P., 2001, Cultural responses to climate change during the last late Holocene: Science, v. 292, p. 667~673.
    Denton G H. Karlen W., 1973, Holocene climatic variations: Their pattern and cause: Quaternary Research, v.3, p. 155–205.
    de Villiers, S., Shen, G.T., and Nelson, B.K., 1994, The Sr/Ca-temperature relationship in coralline aragonite:Influence of variability in (Sr/Ca) seawater and skeletal growth parameters: Geochim. Cosmochim. Acta, v. 58, p. 197–208.
    Dodge, R.E., A.M. Szmant, R. Garcia, P.K. Swart, A Forester and J.J. Leder, 1992, Skeletal structural basis of density banding in the reef coral Montastraea annularis: Proc. Seventh Int, Coral Reef Symp, Guam, p. 186–195
    Dong, J.G., Wang, Y.J., Cheng, H., Hardt, B., Edwards, R.L., Kong, X.G., Wu, J.Y., Chen, S.T., Liu, D.B., Jiang, X.Y., Zhao, K., 2010, A high-resolution stalagmite record of the Holocene East Asian Monsoon from Mount Shennongjia, central China: Holocene, v. 20, p. 257–264.
    Dong, J., Shen, C.-C., Kong, X., Wang, H.-C., and Jiang, X., 2015, Rec-onciliation of hydroclimate sequences from the Chinese Loess Plateau and low-latitude East Asian Summer Monsoon regions over the past 14,500 years: Palaeogeogr. Palaeocl., v. 435, p.127–135.
    Druffel, E.R.M., Dunbar, R.B., Wellington, G.M., and Minnis, S.A., 1989, Reefbuilding corals and identification of ENSO warming episodes: Oceanography Series, v. 52, p. 233–254.
    Dunbar, R.B. and Wellington, G.M., 1981, Stable isotopes in a branching coral monitor seasonal temperature variation: Nature, v. 293, p. 453–455.
    Dunbar, R.B. and Cole, J.E., 1992, Coral records of ocean-atmosphere variability: Report from the workshop on coral paleoclimate reconstruction, p. 1–37.
    Dykoski,C.A., 2005, A High-resolution,absolute-dated Holocene and deglacial Asian monsson record from Dongge Cave, China: Earth and Planctary Science Letters , v. 233, p. 71–86.
    Epstein, S., Buchsbaum, R., Lowenstam, H.A., and Urey, H.C., 1953, Revised carbonate-water isotopic temperature scale: Bull. Geol. Soc. Amer., v.64, p. 1315–1326.
    Fairbanks, R.G. and Dodge, R.E., 1979, Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis: Geochim. Cosmochim. Acta, v. 43, no. 7, p. 1–10
    Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore, M.D., and Charled, C.D., 1997, Evaluating climate indices and their geochemical proxies measured in corals: Coral Reefs, v. 16, p. 93–100.
    Fallon, S.J., McCulloch, M. T., and Alibert, C., 2003, Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison: Coral Reefs, v. 22, p. 389–404.
    Felis, T., Pätzold, J., 2004, Increased seasonality in Middle East temperatures during the last interglacial period: Nature, v. 429, no. 6988, p. 164–168.
    Gagan. M.K., Chivas, A.R., and Isdale, P.J., 1994, High-resolution isotopic records from coral using ocean temperature and mass spawning chronometers: Earth and Plancetary Science Letters, v. 121, p. 549–558.
    Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., Head, M.J., 1998, Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific: Science, v. 279, no. 5353, p. 1014–1018.
    Gagan. M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., and Head, M.J., 1998, Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific: Science, v. 279, p. 1014–1018.
    Ge Q S, Zheng J Y, Fang X Q., 2003, Temperature changes of winter-half-year in eastern China during the past 2000 years: The Holocene, v. 13, no. 6, p. 933-940.
    Goreau, T.J., 1977, Carbon metabolism in calcifying and photosynthetic organisms: Theoretical models based on stable isotope data. In Proceedings, Third International Coral Reef Symposium. University of Miami, p. 395-401 .
    Grottoli, A.G. and Wellington, G.M., 1999, Effect of light and zooplankton on skeletal delta 13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea: Coral Reefs, v. 18, p. 29–41.
    Grottoli, A.G., 2002, Effect of light and brine shrimp on skeletal delta 13C in the Hawaiian coral Porites compressa: A tank experiment: Geochimica et Cosmochimica Acta, v. 66, p. 1955–1967.
    Guilderson, T.P., Fairbanks, R.G., and Rudbenstone, J.L., 1994, Tropical extension rate and stable isotopic (13C/12C and 18O/16O) composition in response to several environmental variables in the Caribbean reef coral Siderastrea sidereal: Maeine Ecology Progress Series, v. 166, p. 109–118.
    Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Röhl, U., 2001, Southward migration of the intertropical convergence zone through the Holocene: Science, v. 293, p. 1304–1308.
    Hoefs, J., 2003, Stable Isotope Geochemistry (7 th ed.), Springer.
    Hou G.,Fang X., 2011, Characteristics of Holocene Temperature Change in China: Progress in Geography, v. 30, no. 9, p. 1075–1080.
    Huang, C.Y., 1997, Surface ocean and monsoon climate variability in the South China Sea since the last glaciation: Marine Micropaleontology, v. 32, p. 71–94.
    Hudson, J.H., E.A. Shinn, R.B. Halley, and B.H. Lidz, 1976, Sclerochronology— a tool for interpreting past environments: Geology, v. 4, p. 361–364.
    Jiang, X.Y., He, Y.Q., Shen, C.-C., Kong, X.G., Li, Z.Z., Chang, Y.-W., 2012, Stalagmite inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the Climatic Optimum in the Asian monsoon territory: Chin. Sci. Bull, v. 57, p. 795–801.
    Kiyama. O., Yamada, T., Nakamori, T., and Iryu, Y., 2000, Early Holocene coral δ18O-based sea surface temperature (in Japanese with English abstract): Quaternary Research, v. 39, p. 69–80.
    Kutzbach, J. E. & Guetter, P. J. in Milankovitch and Climate, part 2 (eds Berger, A. L. et al.) 801–820 (Reidel, Dordrecht, 1984).
    Lalli, C.M. and T.R. Parsons, 1995, Biological Oceanography: An Introduction. Oxford, UK: Butterworth-Heinemann Ltd. p. 220-233.
    Land, L.S., Lang, J.C., and Barners, D.J., 1975, Extension rate:A primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons: Marine Biology, v. 33, p. 221–233.
    Liew, P.M., Lee,C.Y., and Kou, C.M., 2006, Holocene thermal optical and climate variability of East Asian monsson inferred from forest reconstruction of a subalpine pollen sequence, Taiwan: Earth and Planetary Science Letters, v. 250, p. 596–605.
    Ma, T. Y., 1933, On the seasonal changes of growth in some Palaeozoic corals: Imp. Acad., Tokyo, Proc., v. 9, p. 407-409.
    Ma, T. Y., 1934, On the seasonal change of growth in a reef coral, Favia speciosa (Dana), and the water-temperature of the Japanese seas during the latest geological times: Imp. Acad., Tokyo, Proc., v. 10, p. 353–356.
    Ma, T. Y. , 1943, The climate and the relative positions of Eurasia and North America during the Ordovician periods determined by the growth rate of corals, Research on the Past Climate and Continental Drift: Imp. Acad., Tokyo, Proc., v. 1.
    Ma, T. Y., 1943, The climate and relative position of continents during the Silurian period as determined by the growth rate of corals: Imp. Acad., Tokyo, Proc., v. 2.
    Ma, T. Y., 1943, The climate and relative position of continents during the Devonian: Imp. Acad., Tokyo, Proc., v. 3.
    McConnaaughey, T., 1989a 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns: Geochim. Cosmochim. Acta, v. 53, p. 151–162.
    McConnaaughey, T., 1989b, 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects: Geochim Cosmochim. Acta, v. 53, p. 163–171.
    McCulloch, M., Gagan, M.K., Mortimer, G.E., Chivas, A.R.,and Isdale, P.J., 1994, A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Nino: Geochim. Cosmochim. Acta, v. 58, p. 2747–2754.
    McCulloch, M., Mortimer, G., Esat, T., Xianhua, L., Pillans, B., Chappel, J., 1996, High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula, Earth and Planetary Science Letters, v. 138, p. 169–178.
    McCulloch M., Fallon S., Wyndham T., Hendy E., Lough J., and Barnes D., 2003, Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement: Nature , v. 421, p. 727–730.
    M. Milankovitch, 1941, Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeiten Problem: Roy Serbian Acad. Spec. Pub., v. 133.
    Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., and Yoshida, N., 2002, Salinity record for the 1997-98 El Nino from Western Pacific corals: Geophys. Res. Lett., v. 29, no. 11, p. 15401–1544.
    Morimoto, M., Kayanne, H., Abe, O., and McCulloch, M.T., 2007, Intensified mid-Holocene Asian monsoon record in corals from Kikai Island, subtropical northwestern Pacific: Quaternary Research, v. 67, p. 204–214.
    Ninno, H., and Emery, K.O., 1961, Sediments of shallow portion of East China Sea and South China: Geol. Soc. Amer. Bull., v. 72, p. 731–762.
    Nitani, H., 1972, Beginning of the Kuroshio: In Kuroshio, Its Physical Aspects, ed. By H. Stommel and K. Yoshida, Univ. Tokyo Press, Tokyo, p.129-163,
    Nozaki, Y., D.M. Rye, K.K. Turekian, and R.E. Dodge., 1978, A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral: Geophys. Res. Lett., v. 5, p. 825-828 .
    Pätzold, J., 1984, Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines): Coral Reefs, v. 3, p. 87-90.
    Quinn, T. M., and D. E. Sampson, 2002, A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry: Paleoceanography, v. 17, no. 4, p. 1062.
    Renssen, H., Seppä, H., Crosta, X., Goosse, H., & Roche, D. M., 2012, Global characterization of the Holocene Thermal Maximum: Quaternary Science Reviews, v. 48, p. 7–19.
    Schrag, D.P., 1999, Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates: Paleoceanography, v. 14, no. 2, p. 97–102.
    Shackleton, N.J., 1974, Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the lastglacial, Colloque CNRS No. 219, Centre National de la Recherche Scientifique, Paris, p. 203–210.
    Shen, C.C., Lee, T., Chen, C.Y., Wang, C.H., Dai, C.F., and Li, L.A., 1996, The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites coral: Geochim. Cosmochim. Acta, v . 60, no. 20, p. 3849–3858.
    Shen, C. C., Emerson, S. R., Lee, T., Chiu, C. H., and Hastings, W.D., 1999, A high precision benthic foraminiferal Sr/Ca record over the past 35000 years: Annual Meeting, Geol. Soc. China, p. 219–221.
    Shen, C.C.,Liu, K.K.,Lee, M.Y., Lee, T., Wang, C.H. and Lee, H.J., 2005b, A novel method for tracing coastal water masses using Sr/Ca ratios and salinity in Nanwan Bay, southern Taiwan: Estuarine, Coastal and Shelf Sci., v. 65,p. 135–142.
    Smith, S.V., Buddemeier, R.W., Redalie, R.C., and Houk, J.E., 1979, Strontium-calcium thermometry in coral skeletons: Science, v. 204, p. 404–407.
    Stoll, H.M. and Schrag, D.P., 1998, Effects of Quaternary sea level cycles on strontium in seawater: Geochim. Cosmochim. Acta, v. 62, p. 1107–1118.
    Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., and Lund, S., 2004, Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch: Nature, v. 431, p. 56–59.
    Suzuki, A., Yukino, I., and Kawahata, H., 1999, Temperature-skeletal δ18O relationshop of Porites australiensis from Ishigaki Island, the Ryukyus, Japan: Geochemical Journal, v. 33, p. 419–428.
    Sun, S.C. (1965) Geology and petroleum potentialities of the Chingshui- Yuanlin area, Taiwan: Petrol. Geol. Taiwan, 4, 161-173.
    Sun, H.T., 1999, Coral-based Reconstruction of the Climate for Southern Taiwan during Holocene Maximum, Master thesis, National Taiwan University, Taipei, 55 pages.
    Sun, Y., 2005, Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate: Paleoceanography, v. 20, PA4005.
    Sun, D., Su, R., McConnaughey, T.A., and Bloemendal, J., 2008, Variability of skeletal growth and δ13C in massive corals from the South China Sea: Effects of photosynthesis, respiration and human activities: Chemical Geology, v. 225, p. 414–425.
    Swart, P.K., 1983, Carbon and oxygen isotope fractionation in scleractinian corals: A review. Earth-Sci. Rev., v. 19, p. 51-80 .
    Veron, J. E. N., 1993, Corals of Australia and the Indo-Pacific / J.E.N. Veron. Honolulu : University of Hawaii Press.
    Wang, L., Sarnthein, M., Erlenkeuser, H., 1999, Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea: Geophysical Research Letters, v. 26, p. 2889–2892.
    Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005, The Holocene Asian monsoon: links to solar changes and North Atlantic climate: Science, v. 308, p. 854–857.
    Weber, J.N., and Woodhead, P.M.J., 1972, Temperture dependence of oxygen-18 concentration in reef coral carbonates: Geophys. Res., v.77, p. 463–473.
    Weber,J.N., 1973, Incorporation of strontium into reef coral skeletal carbonate: Geochim. Cosmochim. Acta, v. 37, p. 2173–2190.
    Weber, J.N., 1974, C-13/C-12 ratios as natural tracers elucidating calcification processes in reef-building and non-reef-building corals: In Proceedings of the Second International Coral Reef Symposium 2. Great Barrier Reef Commission, p. 289-298 .
    Wu, C.W., 2012, Mid-Holocene paleoclimate of NW Taiwan inferred from δ18O, δ13C and Sr/Ca ratio of coral Porites Skeleton, Master thesis, NationalTaiwan Normal University, Taipei, 75 pages.
    Yang, Y.-J., 2016, Environmental evolution of the western coastal plain inTaiwan since the Last Glacial Maximum periods, Master thesis, NationalTaiwan University, Taipei, 173 pages.
    Yu, K.F., Chen, T.G. Huang, D.C., Zhao, H.T., Zhong, J.L., and Liu, D.S., 2001, The high-resolution climate record in the δ18O of Porites lutea from the Nansha Island of China: Chinese Science Bulletin, v. 46, no. 24, p. 2097–2102.

    下載圖示
    QR CODE