簡易檢索 / 詳目顯示

研究生: 陳緯諺
Chen Wei-Yen
論文名稱: 矽奈米柱陣列太陽能電池
Silicon nanorod array solar cell
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 太陽能電池奈米柱
英文關鍵詞: solar cell, nanorod
論文種類: 學術論文
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃著重於研發p-i-n矽奈米柱陣列結構太陽能電池,其具高光電轉換效率與抗反射之優勢。研究內容為利用半導體製程技術,製作多種型式奈米柱排列結構,利用手指狀電極與背電極方式將載子收集,並進行元件光電轉換效率與外部量子效應探討,其後更使用蒸鍍技術沉積透明導電層(ITO)於正面,目的為減少載子傳輸路徑提升收集率。
      本研究p-i-n結構矽奈米柱採用矩陣或錯位排列方式,皆可得到光電轉換效率10%以上之成果,其反射率遠低於平面結構之太陽能電池,具極佳抗反射特性,且沉積ITO薄膜後,最高可提升18.24%之光電流值。

    In this study, solar cells consisting of ordered p-i-n junction silicon nanorod matrix array with different lengths, diameters and period were fabricated. The advantages of p-i-n nanorod structures were low reflection and high surface to volume ratio compared to planar silicon thin films. Moreover, we designed hexagonal arrays to get sufficiently dense array to gain more number of p-i-n junction. The direct electrical pathways provided by the nanorod ensure the rapid collection of carriers generated throughout the device limited primarily by the surface area of the nanrods array. And devices deposit the ITO film would supply a shorter carrier diffusion length to enhance the photocurrent.
    Finally, we present that the p-i-n nanorod of matrix and hexagonal array structure solar cell actually improve the power conversion efficiency up to 10%, and had an excellent antireflection performance of optical. After depositing the ITO film, it enhances the nanorod devices photocurrent value 18.24% (the highest).

    總目錄 I 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1太陽能電池介紹 3 1.1.1 基礎原理 3 1.1.2 等效電路 4 1.1.3 開路電壓 5 1.1.4 短路電流 6 1.1.5 填充因子 7 1.1.6光電轉換效率 8 1.1.7 量子效率 9 1.2 太陽能電池發展簡介 11 1.2.1 第一代太陽能電池 12 1.2.2 第二代太陽能電池 13 1.2.3 第三代太陽能電池 13 1.2.3.1 異質接面結構太陽能電池 14 1.2.3.2 多能隙結構太陽能電池 15 1.2.3.3 奈米結構太陽能電池 16 1.3 研究動機與目的 17 1.3.1 文獻回顧 17 1.3.2 本研究特色 19 第二章 元件製作與儀器分析 21 2.1 元件基板 21 2.2 元件製作 21 2.2.1 成長氧化層 22 2.2.2 形成奈米柱陣列 24 2.2.3 沉積薄膜 29 2.2.4 製作電極 32 2.3 元件特性量測儀器 36 2.3.1 N&K分析儀 36 2.3.1.1機台規格 36 2.3.1.2相關原理 37 2.3.2 太陽能電池效率量測系統 38 2.3.2.1 機台規格 39 2.3.2.2 相關原理 39 2.3.3分光轉換效率量測系統 40 2.3.3.1 機台規格 41 2.3.3.2 相關原理 42 第三章 結果與討論 43 3.1 奈米柱長度之分析 43 3.1.1 元件製作 43 3.1.2 數據分析 44 3.1.3 結果討論 45 3.2 基板與薄膜沉積厚度之分析 51 3.2.1 元件製作 51 3.2.2 數據分析 52 3.2.3 結果討論 53 3.3 奈米柱矩陣排列方式之分析 62 3.3.1 元件製作 62 3.3.2 數據分析 63 3.3.3 結果討論 65 3.4 奈米柱錯位排列方式之分析 76 3.4.1 元件製作 76 3.4.2 數據分析 77 3.4.3 結果討論 79 3.5 透明導電層之分析 90 3.5.1 元件製作 90 3.5.2 數據分析 90 3.5.3 結果討論 91 第四章 結論 96 參考文獻 99

    1. 維基百科全書;http://zh.wikipedia.org/w/index。
    2. 楊昌中,能源領域中的奈米科技研究,工業研究院能源與環境研究所,民國95年。
    3. U.S. Department of Energy;http://www.energy.gov。
    4. J. G. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Applied Physics Letters 84 (16), 3013-3015 (2004).
    5. 蔡進譯,物理雙月刊(廿七卷五期);國立高雄大學應用物理系。
    6. 林明獻,太陽電池技術入門;全華圖書股份有限公司。
    7. PVEDUACTION.ORG;http://pveducation.org/pvcdrom。
    8. M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Progress in Photovoltaics 18 (2), 144-150 (2010).
    9. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Progress in Photovoltaics 8 (5), 503-513 (2000).
    10. J. K. Rath, H. Meiling and R. E. I. Schropp, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36 (9A), 5436-5443 (1997).
    11. R. Venkatasubramanian, B.C. O’Quinn, J.S. Hills, P.R. Sharps, M.L. Timmons, J. A. Hutchby, H. Field, R. Ahrenkiel and B. Keyes, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, 31-36 (1996).
    12. J. F. Geisz and D. J. Friedman, Semiconductor Science and Technology 17 (8), 769-777 (2002).
    13. X. Wu, J.C. Keane, R.G. Dhere, C. De Hart, A. Duda, T.A. Gessert, S. Asher, D.H. Levi, P. Sheldon, Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 995-1000 (2001)
    14. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B.E. McCandless, and R. Noufi, Conference Record, 33rd IEEE Photovoltaic Specialists Conference, San Diego, California, 1-6 (2008).
    15. N. Naghavi, S. Spiering, M. Powalla, B. Cavana and D. Lincot, Progress in Photovoltaics 11 (7), 437-443 (2003).
    16. B. Oregan and M. Gratzel, Nature 353 (6346), 737-740 (1991).
    17. M. Morooka, and K. Noda, 88th Spring Meeting of the Chemical Society of Japan, Tokyo (2008).
    18. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha and M. Ree, Nature Materials 5 (3), 197-203 (2006).
    19. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 31 (11), 3518-3522 (1992).
    20. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty and A Shah, Thin Solid Films 451, 518-524 (2004).
    21. Takahiro Mishima, Mikio Taguchi, Hitoshi Sakata, and Eiji Maruyama, Solar Energy Materials & Solar Cells (2010)
    22. R. R. King, N. H. Karam, J. H. Ermer, M. Haddad, P. Colter, T. Isshiki, H. Yoon, H. L. Cotal, D. E. Joslin,D. D. Krut, R. Sudharsanan, K. Edmondson, B. T. Cavicchi, and D. R. Lillington, Presented at the 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, 998-1001 ( 2000)
    23. V. Aroutiounian, S. Petrosyan, A. Khachatryan and K. Touryan, Journal of Applied Physics 89 (4), 2268-2271 (2001).
    24. A. J. Nozik, Physica E-Low-Dimensional Systems & Nanostructures 14 (1-2), 115-120 (2002).
    25. R. P. Raffaelle, S. L. Castro, A. F. Hepp and S. G. Bailey, Progress in Photovoltaics 10 (6), 433-439 (2002).
    26. K. Q. Peng, X. Wang, L. Li, X. L. Wu and S. T. Lee, Journal of the American Chemical Society 132 (20), 6872-6873 (2010).
    27. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang and C. M. Lieber, Nature 449 (7164), 885-U888 (2007).
    28. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima and J. Rand, Applied Physics Letters 91 (23) (2007).
    29. E. C. Garnett and P. D. Yang, Journal of the American Chemical Society 130 (29), 9224-9225 (2008).
    30. O. Gunawan and S. Guha, Solar Energy Materials and Solar Cells 93 (8), 1388-1393 (2009).
    31. L. Hu and G. Chen, Nano Letters 7 (11), 3249-3252 (2007).
    32. B. M. Kayes, H. A. Atwater and N. S. Lewis, Journal of Applied Physics 97 (11) (2005).
    33. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, Nano Letters 8 (12), 4191-4195 (2008).
    34. S. Mokkapati, F. J. Beck, A. Polman and K. R. Catchpole, Applied Physics Letters 95 (5) (2009).
    35. J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo and D. L. Kwong, Applied Physics Letters 95 (24) (2009).
    36. M. Tang, S. T. Chang, T. C. Chen, Z. W. Pei, W. C. Wang and J. Huang, Thin Solid Films 518, S259-S261 (2010).
    37. K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee, Nano Letters 9 (11), 3704-3709 (2009).
    38. 國研院奈米元件實驗室,http://www.ndl.org.tw。
    39. 微電子材料與製程,陳力俊;中國材料科學學會。
    40. Qiang Fang, Yafang Peng, HK Yu, International Conference on Electronic Packaging Technology & High Density Packaging (2008)
    41. Solarlux,http://www.eyesolarlux.com。

    無法下載圖示 本全文未授權公開
    QR CODE