簡易檢索 / 詳目顯示

研究生: 鄭祐松
You-Song Cheng
論文名稱: 有機催化連鎖外消旋硝基丙烯醇動力學分割之探討
Asymmetric Organocatalytic Kinetic Resolution : Synthesis of Fully Substituted Tetrahydropyrans
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 140
中文關鍵詞: 有機催化連鎖反應不對稱合成動力學分割
英文關鍵詞: organocatalysis, domino reaction, asymmetric synthesis, kinetic resolution
論文種類: 學術論文
相關次數: 點閱:299下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用小分子有機催化劑,進行連鎖不對稱有機催化反應,短時間且高效率地,建構多重原子的鍵結與立體化學中心,是一種高效率的手性合成策略,避免繁瑣的步驟或是保護基的反應操作;此外,藉助反應活化能的差異,造成不同反應速率,進行動力學分割,分離外消旋化合物,並得到兩種高光學純度的分子,減少廢棄物生成,具有發展潛力。本實驗發展出以-雙苯基脯胺醇三甲基矽醚和酸試劑作為反應共催化劑,促使醛類分子與硝基丙烯醇,進行Michael加成/縮醛化反應,合成出多取代四氫吡喃化合物。透過10 mol%的苯甲酸,作為反應酸試劑,在1, 2-二氯乙烷為反應溶劑的條件,反應溫度為0 oC,並在-雙苯基脯胺醇三甲基矽醚(10 mol%)存在的最佳條件下,進行不對稱連鎖催化反應,可獲得不錯產率,鏡像超越值最高為99% ee的四氫吡喃衍生物,並且回收掌性硝基丙烯醇分子,光學純度最高達97% ee。

    Asymmetric organocatalytic domino reactions are highly efficient synthetic strategies by utilizing organocatalyst, these reactions which involving two or more bond-forming reactions and several stereogenic centers efficiently in short term, and avoid operating complicated protection/deprotection steps. Kinetic resolution is one of the potentially developed concepts, which might obtain enantioriched targeted product and separated optical unreactive recovery simultaneously through different activation energy. Here we report an efficient -diphenyl-L-prolinol trimethyl silyl ether and acidic additive-promoted Michael/acetalization reaction of various aldehydes and nitro allylic alcohols, and acquire expected tetrahydorpyrans. The reaction is carried out by taking aldehydes and nitro allylic alcohols, in presence of catalyst(10 mol%)and benzoic acid(10 mol%)in the DCE at 0 oC, which proceeds by way of a catalyzed Michael/acetalization reaction sequence obtaining the products with good yields and excellent stereoselectivities(up to 99% ee), in regard to the recovered nitro allylic alcohols, all we can receive good-to-excellent enantiomeric excess(up to 97% ee).

    目  錄 第一章 序論   1 1-1 前言   1 1-2 有機不對稱合成方法  3 1-3 有機催化劑之發展背景及相關文獻  4 1-4 有機不對稱胺催化形式  11 1-4-1 不對稱烯胺催化反應  14 1-4-2 不對稱亞胺離子催化反應  15 1-4-3 SOMO烯胺催化反應  16 1-5 -雙苯基脯胺醇三甲基矽醚催化劑之發展背景  17 1-5-1 -雙苯基脯胺醇三甲基矽醚催化劑之應用  22 1-5-1-1 烯胺中間體催化  22 1-5-1-2 亞胺離子中間體催化  25 1-5-1-3 烯胺-亞胺離子共催化  27 1-5-1-4 本實驗室之應用  32 1-5-1-5 雙取代脯胺醇矽醚之立體化學控制  35 1-6 研究動機  37 第二章 實驗結果與討論   39 2-1 不對稱偶聯反應  39 2-2 外消旋硝基丙烯醇的製備  40 2-3 連鎖不對稱有機催化動力學分割反應  41 2-3-1 有機催化劑的篩選  42 2-3-2 反應溶劑的篩選  44 2-3-3 添加劑效應  45 2-3-4 優化反應之探索  47 2-3-5 不同取代基之探討  48 2-3-6 多取代四氫吡喃衍生物之產物結構分析  50 2-3-7 反應機構之探討  52 2-3-8 結論  55 第三章 實驗部分   57 3-1 分析儀器及基本實驗操作  57 3-2 不對稱Michael/縮醛化反應之實驗步驟  59 3-3 光譜數據  60 第四章 參考文獻   85 附錄一 1H -NMR、13C- NMR光譜圖  89 附錄二 X-ray結構解析與數據  123

    1. http://en.wikipedia.org/wiki/Chemistry
    2. http://en.wikipedia.org/wiki/Organic_chemistry
    3. The article of "Information for the Public" for the Nobel Prize in Chemistry 2001.
    4. http://en.wikipedia.org/wiki/Green_chemistry
    5. Bredig, G.; Fiske, W. S. Biochem. Z. 1912, 7.
    6. (a) Ruppert, J.; Eder, U.; Wiechert, R. Chem. Ber. 1973, 106, 3636.
    (b) Danishefsky, S.; Cain, P.; Nagel, A. J. Am. Chem. Soc. 1975, 97, 380.
    7. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
    8. Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496.
    9. Hajos, Z. G. J.Org. Chem. 1974, 39, 12.
    10. Agami, C. J. Am. Chem. Soc. 1986, 108, 2353.
    11. Swamminathan, S. Tetrahedron: Asymmetry 1999, 10, 1631.
    12. Houk, K. N. J. Am. Chem. Soc. 2001, 123, 12911.
    13. List, B.; Hoang, L.; Martin, H. J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5839.
    14. List, B.;Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc. 2000, 122, 2395.
    15. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
    16. Aleman, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774.
    17. MacMillan, D. W. C. Nature 2008, 455, 304.
    18. Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, L.; Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248.
    19. (a) List, B. Chem. Rev. 2007, 107, 5413.
    (b) Jacobsen, E. N.; Doyle, A. G. Chem. Rev. 2007, 107, 5713.
    20. Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science, 2007, 316, 582.
    21. Juhl , K.; Jørgensen, K.A. Angew. Chem. Int. Ed. 2003, 42, 1498.
    22. Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen , K. A. J. Am. Chem. Soc. 2005, 127, 18296.
    23. Bakshi, R. K.; Shibata, S.; Corey, E. J. J. Am. Chem. Soc. 1987, 109, 5551.
    24. Hayashi, Y.; Gotoh, H.; Hayasi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212.
    25. AlemBn, J.; Cabrera, S.; Maerten, E.; Overgaard, J.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2007,46, 5520.
    26. Ibrahem, I.; Zhao, G. L.; Cordova, A. Chem. Eur. J. 2007, 13, 683.
    27. Zhao, G. L.; Xu, Y.; Sunden, H.; Eriksson, L.; Sayah, M., Cordova, A. Chem. Commun. 2007, 734.
    28. Bertelsen, S.; Marigo, M.; Brandes, S.; Diner, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.
    29. Jia, Z.-J.; Jiang, H.; Li, J.-L.; Gschwend, B.; Li, Q.-Z.; Yin, X.; Grouleff, J.; Chen, Y.-C.; Jørgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053.
    30. (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874.
    (b) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta 2006, 39, 79.
    31. Brandau, S.; Landa, A.; Franzen, J., Marigo, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2006,45, 4305.
    32. (a) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021.
    (b) Berrisford, D. J.; Bolm, C. Angew. Chem. Int. Ed. 1995, 34, 1717.
    (c) Dias, L. C. Curr. Org. Chem. 2000, 4, 305.
    33. Gotoh, H.; Masui, R.; Ogino, H.; Shoji, M.; Hayashi, Y. Angew. Chem. Int. Ed. 2006, 45, 6853.
    34. Hong, B. C.; Wu, M. F.; Tseng, H. C. Huang, G. F. Su, C. F.; Liao, J. H. J. Org. Chem. 2007, 72, 8459.
    35. (a) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570.
    (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P, G. Angew. Chem. Int. Ed. 2006, 45, 7134.
    36. Pellissier, H. Adv. Synth. Catal. 2012, 354, 237.
    37. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
    38. Zu, L.; Li, H.; Xie, H.; Wang, J.; Jiang, W.; Tang, Y.; Wang, W. Angew. Chem. Int. Ed. 2007, 46, 3732.
    39. Enders, D.; Narine, A. A.; Benninghaus, T. R.; Raabe, G. Synlett 2007, 1667.
    40. Rios, R.; Vesely, J.; Sunden, H.; Ibrahem, I.; Zhao, G. L.; Cordova, A. Tetrahedron Lett. 2007, 48, 5835.
    41. Anwar, S.; Chang, H. J.; Chen, K. Org. Lett. 2011, 13, 2200.
    42. Kuan, H. H.; Chien, C. H.; Chen, K. Org. Lett. 2013, 15, 2880.
    43. Anwar, S.; Li, S. M.; Chen, K. Org. Lett. 2014, 16, 2993.
    44. Reddy, R. J.; Chen, K. Org. Lett. 2011, 13, 1458.
    45. Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496.
    46. Yeh, L. F.; Anwar, S.; Chen, K. Tetrahedron 2012, 68, 7317.
    47. Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632.
    48. Uehara, H.; Imashiro, R.; Hernández-Torres, G.; Barbas, C. F. III Proc. Natl. Acad. Sci. USA 2010, 107, 20672.
    49. Ishikawa, H.; Sawano, S.; Yasui, Y.; Shibata, Y.; Hayashi, Y. Angew. Chem. Int. Ed. 2011, 50, 3774.
    50. Deb, I.; Dadwal, M.; Mobin, S. M.; I. Namboothiri, N. N. Org. Lett. 2006, 8, 1201.
    51. Kuan, H. H.; Reddy, R. J.; Chen, K. Tetrahedron 2010, 66, 9875.

    下載圖示
    QR CODE