簡易檢索 / 詳目顯示

研究生: 游敦皓
論文名稱: 以快速傅立葉轉換為基礎之相位展開法則在可程式化系統晶片上之實現
指導教授: 黃文吉
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 系統晶片設計可程式化邏輯閘陣列軟硬體整合設計相位展開技術
英文關鍵詞: SoPC, FPGA, Hardware Software Co-Design, Phase Unwrapping
論文種類: 學術論文
相關次數: 點閱:123下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個以快速傅立葉轉換為基礎的相位展開法則硬體電路架構,此相位展開硬體電路架構的功能在於加速數位全像顯微鏡(Digital Holographic Microscopy, DHM)的相位展開運算。本架構會依據一個以快速傅立葉轉換為基礎的相位展開演算法則來設計並且實作硬體電路以計算出一個最小平方誤差解(minimum squared error solution)。硬體架構中包含四個主要單元:轉換前單元、快速傅立葉轉換單元、轉換後單元以及嵌入式記憶體,在架構中利用嵌入式記憶體當作暫存空間搭配上其他三個單元的運算來達到加速電路計算的效果。為了驗證本論文提出的硬體架構的正確性,會將本硬體電路設計成客製化的電路放入system on programmable chip(SoPC)系統來實際上測量系統的效能。實驗的結果顯示本論文提出的硬體電路架構可以有效的減少相位展開運算所需要花費的時間以及硬體資源的消耗量,適合於設計嵌入式的DHM系統。

    This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). An FFT-based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is used as a custom user logic in a system on programmable chip (SoPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while attaining excellent performance for designing an embedded DHM system.

    中文摘要 i ABSTRACT ii 誌 謝 iii 目錄 iv 附圖目錄 vi 附表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的與方法 3 1.4全文架構 5 第二章 基礎理論及技術背景介紹 6 2.1相位展開技術簡易分類 6 2.2相位展開法則運算流程 7 2.3 FPGA系統設計 11 第三章 相位展開法則之硬體電路實作 15 3.1 相位展開法則之硬體電路架構 15 3.2 轉換前單元(Pre-Transform Unit) 16 3.3 快速傅立葉轉換單元(FFT Unit) 26 3.4 轉換後單元(Post-Transform Unit) 32 3.5 嵌入式記憶體(On-Chip RAM) 37 3.6 軟硬體共同設計(Hardware Software Co-Design) 38 第四章 實驗數據與效能比較 42 4.1 開發平台與測試環境 42 4.2 實驗數據呈現與討論 46 第五章 結論 62 參考著作 63

    [1] ALTERA official web site http://www.altera.com
    [2] S. Braganza and M. Leeser, “An Efficient Implementation of A Phase Unwrapping Kernel on Reconfigurable Hardware,” International Conference on Application-Specific Systems, Architectures and Processors, July 2008.
    [3] H.Calderon, C. Elena, and S. Vassiliadis, “Soft Core Processors and Embedded Processing: a survey and analysis,” Proc. Safe ProRisc Workshop, pp.483-488, 2005.
    [4] M. Costantini and A. Farina, “A Fast Phase Unwrapping Algorithm for SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, no. 1, pp. 452-460, January 1999.
    [5] E. Cuche, P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel of-axis holograms,” Appl. Opt., Vol.38, pp.6994-7001, 1999.
    [6] G. Fornaro, G. Franceschetti, R. Lanari and E. Sansosti, “Robust Phase-Unwrapping Techniques : A Comparison,” Optical Society of America, Vol. 13, no. 12, pp. 2355-2366, December 1996.
    [7] D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software. 605 Third Avenue, New York, NY, 10158-0012: Wiley Inter-Science, 1998.
    [8] D. C. Ghiglia and L. A. Romero, “Robust Two-Dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods,” Optical Society of America, Vol. 11, no. 1, pp. 107-117, January 1994.
    [9] M. D. Pritt and J. S. Shipman, “Least-Square Two Dimensional Phase Unwrapping Using FFT’s,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, no. 3, pp. 706-708, May 1994.
    [10] Hauck, S., and Dehon, A., Reconfigurable Computing, Morgan Kaufmann, 2008.
    [11] U. Spagnolini, “2-D phase unwrapping and phase aliasing,” Geophysics, Vol. 58, no. 9, pp. 1324-1334, September 1993.
    [12] S. Braganza and M. Leeser, “Implementing Phase Unwrapping Using Field Programmable Gate Arrays or Graphics Processing Units : A Comparison,” High-Performance Reconfigurable Computing Technology and Applications, pp. 1-10, November 2008.

    下載圖示
    QR CODE